KGCLMDA:利用知识图和对比学习预测微生物药物潜在关联的计算模型。

IF 5.4
Meiling Liu, Shujuan Su, Guohua Wang, Shan Huang
{"title":"KGCLMDA:利用知识图和对比学习预测微生物药物潜在关联的计算模型。","authors":"Meiling Liu, Shujuan Su, Guohua Wang, Shan Huang","doi":"10.1093/bioinformatics/btaf457","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Predicting microbe-drug associations (MDgAs) is critical for understanding the role of microbes in drug metabolism, exploring their interactions with host physiology, and advancing personalized therapy. However, traditional methods face challenges in dealing with data sparsity, information imbalance, and the extraction of complex biological knowledge, which limit the accurate prediction of microbe-drug associations. Therefore, developing a computational model that can efficiently integrate multi-source data and address the challenges of data sparsity and information imbalance is essential.</p><p><strong>Results: </strong>The paper proposes a model that integrates knowledge graphs and contrastive learning. By constructing both local and non-local association graphs, the model effectively captures the complex relationships between microbes and drugs. We preprocess and model the embedding representations of microbes and drugs, and design a multi-level interactive contrastive learning mechanism to optimize the information flow both within and outside the graph. Experimental results show that our model significantly outperforms existing methods in metrics such as AUC and AUPR, providing an efficient solution for predicting microbe-drug associations.</p><p><strong>Availability and implementation: </strong>The source code is available at: https://github.com/SJshujuan/KGCLMDA. The code used in this study is also available on Zenodo: https://doi.org/10.5281/zenodo.16754402.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12448813/pdf/","citationCount":"0","resultStr":"{\"title\":\"KGCLMDA: a computational model for predicting latent associations of microbial drugs using knowledge graphs and contrastive learning.\",\"authors\":\"Meiling Liu, Shujuan Su, Guohua Wang, Shan Huang\",\"doi\":\"10.1093/bioinformatics/btaf457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Predicting microbe-drug associations (MDgAs) is critical for understanding the role of microbes in drug metabolism, exploring their interactions with host physiology, and advancing personalized therapy. However, traditional methods face challenges in dealing with data sparsity, information imbalance, and the extraction of complex biological knowledge, which limit the accurate prediction of microbe-drug associations. Therefore, developing a computational model that can efficiently integrate multi-source data and address the challenges of data sparsity and information imbalance is essential.</p><p><strong>Results: </strong>The paper proposes a model that integrates knowledge graphs and contrastive learning. By constructing both local and non-local association graphs, the model effectively captures the complex relationships between microbes and drugs. We preprocess and model the embedding representations of microbes and drugs, and design a multi-level interactive contrastive learning mechanism to optimize the information flow both within and outside the graph. Experimental results show that our model significantly outperforms existing methods in metrics such as AUC and AUPR, providing an efficient solution for predicting microbe-drug associations.</p><p><strong>Availability and implementation: </strong>The source code is available at: https://github.com/SJshujuan/KGCLMDA. The code used in this study is also available on Zenodo: https://doi.org/10.5281/zenodo.16754402.</p>\",\"PeriodicalId\":93899,\"journal\":{\"name\":\"Bioinformatics (Oxford, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12448813/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btaf457\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动机:预测微生物-药物关联(MDgAs)对于理解微生物在药物代谢中的作用、探索它们与宿主生理的相互作用以及推进个性化治疗至关重要。然而,传统方法在处理数据稀疏性、信息不平衡以及复杂生物学知识的提取等方面面临挑战,限制了微生物-药物关联的准确预测。因此,开发一种能够有效集成多源数据、解决数据稀疏性和信息不平衡问题的计算模型至关重要。结果:本文提出了一个知识图谱与对比学习相结合的模型。通过构建局部关联图和非局部关联图,该模型有效地捕获了微生物与药物之间的复杂关系。我们对微生物和药物的嵌入表示进行预处理和建模,并设计了一个多层次的交互对比学习机制,以优化图内外的信息流。实验结果表明,我们的模型在AUC和AUPR等指标上明显优于现有方法,为预测微生物-药物关联提供了有效的解决方案。可用性:源代码可从:https://github.com/SJshujuan/KGCLMDA获得。本研究中使用的代码也可以在Zenodo上获得:https://doi.org/10.5281/zenodo.16754402。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
KGCLMDA: a computational model for predicting latent associations of microbial drugs using knowledge graphs and contrastive learning.

Motivation: Predicting microbe-drug associations (MDgAs) is critical for understanding the role of microbes in drug metabolism, exploring their interactions with host physiology, and advancing personalized therapy. However, traditional methods face challenges in dealing with data sparsity, information imbalance, and the extraction of complex biological knowledge, which limit the accurate prediction of microbe-drug associations. Therefore, developing a computational model that can efficiently integrate multi-source data and address the challenges of data sparsity and information imbalance is essential.

Results: The paper proposes a model that integrates knowledge graphs and contrastive learning. By constructing both local and non-local association graphs, the model effectively captures the complex relationships between microbes and drugs. We preprocess and model the embedding representations of microbes and drugs, and design a multi-level interactive contrastive learning mechanism to optimize the information flow both within and outside the graph. Experimental results show that our model significantly outperforms existing methods in metrics such as AUC and AUPR, providing an efficient solution for predicting microbe-drug associations.

Availability and implementation: The source code is available at: https://github.com/SJshujuan/KGCLMDA. The code used in this study is also available on Zenodo: https://doi.org/10.5281/zenodo.16754402.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信