Tango*:使用化学信息价值函数的约束综合规划。

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Daniel Armstrong, Zlatko Jončev, Jeff Guo ‡ and Philippe Schwaller
{"title":"Tango*:使用化学信息价值函数的约束综合规划。","authors":"Daniel Armstrong, Zlatko Jončev, Jeff Guo\r\n ‡\r\n and Philippe Schwaller","doi":"10.1039/D5DD00130G","DOIUrl":null,"url":null,"abstract":"<p >Computer-aided synthesis planning (CASP) has made significant strides in generating retrosynthetic pathways for simple molecules in a non-constrained fashion. Recent work has introduced specialized bidirectional search algorithms to find synthesis pathways that incorporate pre-selected starting materials, tackling a specific formulation of the starting material-constrained problem. In this work, we introduce a simple guided search—Tango*-which allows solving the starting material-constrained synthesis planning problem using an existing unidirectional search algorithm, Retro*. We show that by optimising a single hyperparameter, Tango* outperforms existing methods in terms of efficiency and solve rate. We also highlight the effectiveness of our computed node cost function in steering synthesis pathways.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 9","pages":" 2570-2578"},"PeriodicalIF":6.2000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12355204/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tango*: constrained synthesis planning using chemically informed value functions\",\"authors\":\"Daniel Armstrong, Zlatko Jončev, Jeff Guo\\r\\n ‡\\r\\n and Philippe Schwaller\",\"doi\":\"10.1039/D5DD00130G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Computer-aided synthesis planning (CASP) has made significant strides in generating retrosynthetic pathways for simple molecules in a non-constrained fashion. Recent work has introduced specialized bidirectional search algorithms to find synthesis pathways that incorporate pre-selected starting materials, tackling a specific formulation of the starting material-constrained problem. In this work, we introduce a simple guided search—Tango*-which allows solving the starting material-constrained synthesis planning problem using an existing unidirectional search algorithm, Retro*. We show that by optimising a single hyperparameter, Tango* outperforms existing methods in terms of efficiency and solve rate. We also highlight the effectiveness of our computed node cost function in steering synthesis pathways.</p>\",\"PeriodicalId\":72816,\"journal\":{\"name\":\"Digital discovery\",\"volume\":\" 9\",\"pages\":\" 2570-2578\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12355204/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00130g\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00130g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

计算机辅助合成计划(CASP)在以无约束方式生成简单分子的反合成途径方面取得了重大进展。最近的工作引入了专门的双向搜索算法来寻找包含预先选择的起始材料的合成途径,解决了起始材料受限问题的特定配方。在这项工作中,我们引入了一个简单的引导搜索tango *,它允许使用现有的单向搜索算法Retro*来解决起始材料约束的综合规划问题。我们表明,通过优化单个超参数,Tango*在效率和求解率方面优于现有方法。我们还强调了计算节点成本函数在控制合成路径中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tango*: constrained synthesis planning using chemically informed value functions

Tango*: constrained synthesis planning using chemically informed value functions

Computer-aided synthesis planning (CASP) has made significant strides in generating retrosynthetic pathways for simple molecules in a non-constrained fashion. Recent work has introduced specialized bidirectional search algorithms to find synthesis pathways that incorporate pre-selected starting materials, tackling a specific formulation of the starting material-constrained problem. In this work, we introduce a simple guided search—Tango*-which allows solving the starting material-constrained synthesis planning problem using an existing unidirectional search algorithm, Retro*. We show that by optimising a single hyperparameter, Tango* outperforms existing methods in terms of efficiency and solve rate. We also highlight the effectiveness of our computed node cost function in steering synthesis pathways.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信