旋律:发现微生物特征的微生物组关联研究的荟萃分析。

IF 12.3 1区 生物学 Q1 Agricultural and Biological Sciences
Zhoujingpeng Wei, Guanhua Chen, Zheng-Zheng Tang
{"title":"旋律:发现微生物特征的微生物组关联研究的荟萃分析。","authors":"Zhoujingpeng Wei, Guanhua Chen, Zheng-Zheng Tang","doi":"10.1186/s13059-025-03721-4","DOIUrl":null,"url":null,"abstract":"<p><p>Standard protocols for meta-analysis of association studies are inadequate for microbiome data due to their complex compositional structure, leading to inaccurate and unstable microbial signature selection. To address this issue, we introduce Melody, a framework that generates, harmonizes, and combines study-specific summary association statistics to powerfully and robustly identify microbial signatures in meta-analysis. Comprehensive and realistic simulations demonstrate that Melody substantially outperforms existing approaches in prioritizing true signatures. In the meta-analyses of five studies on colorectal cancer and eight studies on the gut metabolome, we showcase the superior stability, reliability, and predictive performance of Melody-identified signatures.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"26 1","pages":"245"},"PeriodicalIF":12.3000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12359909/pdf/","citationCount":"0","resultStr":"{\"title\":\"Melody: meta-analysis of microbiome association studies for discovering generalizable microbial signatures.\",\"authors\":\"Zhoujingpeng Wei, Guanhua Chen, Zheng-Zheng Tang\",\"doi\":\"10.1186/s13059-025-03721-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Standard protocols for meta-analysis of association studies are inadequate for microbiome data due to their complex compositional structure, leading to inaccurate and unstable microbial signature selection. To address this issue, we introduce Melody, a framework that generates, harmonizes, and combines study-specific summary association statistics to powerfully and robustly identify microbial signatures in meta-analysis. Comprehensive and realistic simulations demonstrate that Melody substantially outperforms existing approaches in prioritizing true signatures. In the meta-analyses of five studies on colorectal cancer and eight studies on the gut metabolome, we showcase the superior stability, reliability, and predictive performance of Melody-identified signatures.</p>\",\"PeriodicalId\":48922,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"26 1\",\"pages\":\"245\"},\"PeriodicalIF\":12.3000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12359909/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-025-03721-4\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03721-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

关联研究荟萃分析的标准方案不适合微生物组数据,因为它们的组成结构复杂,导致不准确和不稳定的微生物特征选择。为了解决这个问题,我们引入了Melody,这是一个框架,可以生成、协调和结合研究特定的汇总关联统计数据,从而在荟萃分析中强有力地识别微生物特征。全面和现实的模拟表明,Melody在优先考虑真实签名方面大大优于现有的方法。在对5项结直肠癌研究和8项肠道代谢组研究的荟萃分析中,我们展示了melody识别特征的优越稳定性、可靠性和预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Melody: meta-analysis of microbiome association studies for discovering generalizable microbial signatures.

Standard protocols for meta-analysis of association studies are inadequate for microbiome data due to their complex compositional structure, leading to inaccurate and unstable microbial signature selection. To address this issue, we introduce Melody, a framework that generates, harmonizes, and combines study-specific summary association statistics to powerfully and robustly identify microbial signatures in meta-analysis. Comprehensive and realistic simulations demonstrate that Melody substantially outperforms existing approaches in prioritizing true signatures. In the meta-analyses of five studies on colorectal cancer and eight studies on the gut metabolome, we showcase the superior stability, reliability, and predictive performance of Melody-identified signatures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome Biology
Genome Biology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-GENETICS & HEREDITY
CiteScore
25.50
自引率
3.30%
发文量
0
审稿时长
14 weeks
期刊介绍: Genome Biology is a leading research journal that focuses on the study of biology and biomedicine from a genomic and post-genomic standpoint. The journal consistently publishes outstanding research across various areas within these fields. With an impressive impact factor of 12.3 (2022), Genome Biology has earned its place as the 3rd highest-ranked research journal in the Genetics and Heredity category, according to Thomson Reuters. Additionally, it is ranked 2nd among research journals in the Biotechnology and Applied Microbiology category. It is important to note that Genome Biology is the top-ranking open access journal in this category. In summary, Genome Biology sets a high standard for scientific publications in the field, showcasing cutting-edge research and earning recognition among its peers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信