小心在具有强内部相关性的数据集中出现反直觉的错误发现。

IF 12.3 1区 生物学 Q1 Agricultural and Biological Sciences
Chakravarthi Kanduri, Maria Mamica, Emilie Willoch Olstad, Manuela Zucknick, Jingyi Jessica Li, Geir Kjetil Sandve
{"title":"小心在具有强内部相关性的数据集中出现反直觉的错误发现。","authors":"Chakravarthi Kanduri, Maria Mamica, Emilie Willoch Olstad, Manuela Zucknick, Jingyi Jessica Li, Geir Kjetil Sandve","doi":"10.1186/s13059-025-03734-z","DOIUrl":null,"url":null,"abstract":"<p><p>The false discovery rate (FDR) controlling method by Benjamini and Hochberg (BH) is a popular choice in the omics fields. Here, we demonstrate that in datasets with a large degree of dependencies between features, FDR correction methods like BH can sometimes counter-intuitively report very high numbers of false positives, potentially misleading researchers. We call the attention of researchers to use suited multiple testing strategies and approaches like synthetic null data (negative control) to identify and minimize caveats related to false discoveries, as in the cases where false findings do occur, they may be numerous.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"26 1","pages":"249"},"PeriodicalIF":12.3000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12359981/pdf/","citationCount":"0","resultStr":"{\"title\":\"Beware of counter-intuitive levels of false discoveries in datasets with strong intra-correlations.\",\"authors\":\"Chakravarthi Kanduri, Maria Mamica, Emilie Willoch Olstad, Manuela Zucknick, Jingyi Jessica Li, Geir Kjetil Sandve\",\"doi\":\"10.1186/s13059-025-03734-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The false discovery rate (FDR) controlling method by Benjamini and Hochberg (BH) is a popular choice in the omics fields. Here, we demonstrate that in datasets with a large degree of dependencies between features, FDR correction methods like BH can sometimes counter-intuitively report very high numbers of false positives, potentially misleading researchers. We call the attention of researchers to use suited multiple testing strategies and approaches like synthetic null data (negative control) to identify and minimize caveats related to false discoveries, as in the cases where false findings do occur, they may be numerous.</p>\",\"PeriodicalId\":48922,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"26 1\",\"pages\":\"249\"},\"PeriodicalIF\":12.3000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12359981/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-025-03734-z\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03734-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

Benjamini和Hochberg (BH)提出的错误发现率(FDR)控制方法是组学领域的常用方法。在这里,我们证明了在特征之间具有很大程度依赖性的数据集中,像BH这样的FDR校正方法有时会反直觉地报告非常高的误报数量,这可能会误导研究人员。我们呼吁研究人员注意使用合适的多种测试策略和方法,如合成零数据(阴性对照),以识别和最小化与错误发现相关的警告,因为在错误发现确实发生的情况下,它们可能很多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Beware of counter-intuitive levels of false discoveries in datasets with strong intra-correlations.

Beware of counter-intuitive levels of false discoveries in datasets with strong intra-correlations.

Beware of counter-intuitive levels of false discoveries in datasets with strong intra-correlations.

The false discovery rate (FDR) controlling method by Benjamini and Hochberg (BH) is a popular choice in the omics fields. Here, we demonstrate that in datasets with a large degree of dependencies between features, FDR correction methods like BH can sometimes counter-intuitively report very high numbers of false positives, potentially misleading researchers. We call the attention of researchers to use suited multiple testing strategies and approaches like synthetic null data (negative control) to identify and minimize caveats related to false discoveries, as in the cases where false findings do occur, they may be numerous.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome Biology
Genome Biology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-GENETICS & HEREDITY
CiteScore
25.50
自引率
3.30%
发文量
0
审稿时长
14 weeks
期刊介绍: Genome Biology is a leading research journal that focuses on the study of biology and biomedicine from a genomic and post-genomic standpoint. The journal consistently publishes outstanding research across various areas within these fields. With an impressive impact factor of 12.3 (2022), Genome Biology has earned its place as the 3rd highest-ranked research journal in the Genetics and Heredity category, according to Thomson Reuters. Additionally, it is ranked 2nd among research journals in the Biotechnology and Applied Microbiology category. It is important to note that Genome Biology is the top-ranking open access journal in this category. In summary, Genome Biology sets a high standard for scientific publications in the field, showcasing cutting-edge research and earning recognition among its peers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信