{"title":"[危重患者院内心脏骤停后脑损伤临床预测模型的建立、比较和验证]。","authors":"Guowu Xu, Yanxiang Niu, Xin Chen, Wenjing Zhou, Abudou Halidan, Heng Jin, Jinxiang Wang","doi":"10.3760/cma.j.cn121430-20240409-00322","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To develop and compare risk prediction models for in-hospital post-cardiac arrest brain injury (PCABI) in critically ill patients using nomograms and random forest algorithms, aiming to identify the optimal model for early identification of high-risk PCABI patients and providing evidence for precise treatment.</p><p><strong>Methods: </strong>A retrospective cohort study was used to collect the first-time in-hospital cardiac arrest (IHCA) patients admitted to the intensive care unit (ICU) from 2008 to 2019 in the Medical Information Mart for Intensive Care-IV (MIMIC-IV) as the study population, and the patients' age, gender, body mass, health insurance utilization, first vital signs and laboratory tests within 24 hours of ICU admission, mechanical ventilation, and critical care scores were extracted. Independent influencing factors of PCABI were identified through univariate and multivariate Logistic regression analyses. The included patients were randomly divided into a training cohort and an internal validation cohort in a 7:3 ratio, and the PCABI risk prediction model was constructed by the nomogram and random forest algorithm, respectively, and the model was evaluated by receiver operator characteristic curve (ROC curve), the calibration curve, and the decision curve analysis (DCA), and after the better model was selected, 179 patients admitted to Tianjin Medical University General Hospital as the external validation cohort for external evaluation were collected by using the same inclusion and exclusion criteria.</p><p><strong>Results: </strong>A total of 1 419 patients with without traumatic brain injury who had their first-time IHCA were enrolled, including 995 in the training cohort (including 176 PCABI and 819 non-PCABI) and 424 in the internal validation cohort (including 74 PCABI and 350 non-PCABI). Univariate and multivariate analysis showed that age, potassium, urea nitrogen, sequential organ failure assessment (SOFA), acute physiology and chronic health evaluation III (APACHE III), and mechanical ventilation were independent influences on the occurrence of PCABI in patients with IHCA (all P < 0.05). Combining the above variables, we constructed a nomogram model and a random forest model for comparison, and the results show that the nomogram model has better predictive efficacy than the random forest model [nomogram model: area under the ROC curve (AUC) of the training cohort = 0.776, with a 95% credible interval (95%CI) of 0.741-0.811; internal validation cohort AUC = 0.776, with a 95%CI of 0.718-0.833; random forest model: AUC = 0.720, with a 95%CI of 0.653-0.787], and they performed similarly in terms of calibration curves, but the nomogram performed better in terms of decision curve analysis (DCA); at the same time, the nomogram model was robust in terms of external validation cohort (external validation cohort AUC = 0.784, 95%CI was 0.692-0.876).</p><p><strong>Conclusions: </strong>A nomogram risk prediction model for the occurrence of PCABI in critically ill patients was successfully constructed, which performs better than the random forest model, helps clinicians to identify the risk of PCABI in critically ill patients at an early stage and provides a theoretical basis for early intervention.</p>","PeriodicalId":24079,"journal":{"name":"Zhonghua wei zhong bing ji jiu yi xue","volume":"37 6","pages":"560-567"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Development, comparison and validation of clinical predictive models for brain injury after in-hospital post-cardiac arrest in critically ill patients].\",\"authors\":\"Guowu Xu, Yanxiang Niu, Xin Chen, Wenjing Zhou, Abudou Halidan, Heng Jin, Jinxiang Wang\",\"doi\":\"10.3760/cma.j.cn121430-20240409-00322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To develop and compare risk prediction models for in-hospital post-cardiac arrest brain injury (PCABI) in critically ill patients using nomograms and random forest algorithms, aiming to identify the optimal model for early identification of high-risk PCABI patients and providing evidence for precise treatment.</p><p><strong>Methods: </strong>A retrospective cohort study was used to collect the first-time in-hospital cardiac arrest (IHCA) patients admitted to the intensive care unit (ICU) from 2008 to 2019 in the Medical Information Mart for Intensive Care-IV (MIMIC-IV) as the study population, and the patients' age, gender, body mass, health insurance utilization, first vital signs and laboratory tests within 24 hours of ICU admission, mechanical ventilation, and critical care scores were extracted. Independent influencing factors of PCABI were identified through univariate and multivariate Logistic regression analyses. The included patients were randomly divided into a training cohort and an internal validation cohort in a 7:3 ratio, and the PCABI risk prediction model was constructed by the nomogram and random forest algorithm, respectively, and the model was evaluated by receiver operator characteristic curve (ROC curve), the calibration curve, and the decision curve analysis (DCA), and after the better model was selected, 179 patients admitted to Tianjin Medical University General Hospital as the external validation cohort for external evaluation were collected by using the same inclusion and exclusion criteria.</p><p><strong>Results: </strong>A total of 1 419 patients with without traumatic brain injury who had their first-time IHCA were enrolled, including 995 in the training cohort (including 176 PCABI and 819 non-PCABI) and 424 in the internal validation cohort (including 74 PCABI and 350 non-PCABI). Univariate and multivariate analysis showed that age, potassium, urea nitrogen, sequential organ failure assessment (SOFA), acute physiology and chronic health evaluation III (APACHE III), and mechanical ventilation were independent influences on the occurrence of PCABI in patients with IHCA (all P < 0.05). Combining the above variables, we constructed a nomogram model and a random forest model for comparison, and the results show that the nomogram model has better predictive efficacy than the random forest model [nomogram model: area under the ROC curve (AUC) of the training cohort = 0.776, with a 95% credible interval (95%CI) of 0.741-0.811; internal validation cohort AUC = 0.776, with a 95%CI of 0.718-0.833; random forest model: AUC = 0.720, with a 95%CI of 0.653-0.787], and they performed similarly in terms of calibration curves, but the nomogram performed better in terms of decision curve analysis (DCA); at the same time, the nomogram model was robust in terms of external validation cohort (external validation cohort AUC = 0.784, 95%CI was 0.692-0.876).</p><p><strong>Conclusions: </strong>A nomogram risk prediction model for the occurrence of PCABI in critically ill patients was successfully constructed, which performs better than the random forest model, helps clinicians to identify the risk of PCABI in critically ill patients at an early stage and provides a theoretical basis for early intervention.</p>\",\"PeriodicalId\":24079,\"journal\":{\"name\":\"Zhonghua wei zhong bing ji jiu yi xue\",\"volume\":\"37 6\",\"pages\":\"560-567\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zhonghua wei zhong bing ji jiu yi xue\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3760/cma.j.cn121430-20240409-00322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhonghua wei zhong bing ji jiu yi xue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3760/cma.j.cn121430-20240409-00322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
[Development, comparison and validation of clinical predictive models for brain injury after in-hospital post-cardiac arrest in critically ill patients].
Objective: To develop and compare risk prediction models for in-hospital post-cardiac arrest brain injury (PCABI) in critically ill patients using nomograms and random forest algorithms, aiming to identify the optimal model for early identification of high-risk PCABI patients and providing evidence for precise treatment.
Methods: A retrospective cohort study was used to collect the first-time in-hospital cardiac arrest (IHCA) patients admitted to the intensive care unit (ICU) from 2008 to 2019 in the Medical Information Mart for Intensive Care-IV (MIMIC-IV) as the study population, and the patients' age, gender, body mass, health insurance utilization, first vital signs and laboratory tests within 24 hours of ICU admission, mechanical ventilation, and critical care scores were extracted. Independent influencing factors of PCABI were identified through univariate and multivariate Logistic regression analyses. The included patients were randomly divided into a training cohort and an internal validation cohort in a 7:3 ratio, and the PCABI risk prediction model was constructed by the nomogram and random forest algorithm, respectively, and the model was evaluated by receiver operator characteristic curve (ROC curve), the calibration curve, and the decision curve analysis (DCA), and after the better model was selected, 179 patients admitted to Tianjin Medical University General Hospital as the external validation cohort for external evaluation were collected by using the same inclusion and exclusion criteria.
Results: A total of 1 419 patients with without traumatic brain injury who had their first-time IHCA were enrolled, including 995 in the training cohort (including 176 PCABI and 819 non-PCABI) and 424 in the internal validation cohort (including 74 PCABI and 350 non-PCABI). Univariate and multivariate analysis showed that age, potassium, urea nitrogen, sequential organ failure assessment (SOFA), acute physiology and chronic health evaluation III (APACHE III), and mechanical ventilation were independent influences on the occurrence of PCABI in patients with IHCA (all P < 0.05). Combining the above variables, we constructed a nomogram model and a random forest model for comparison, and the results show that the nomogram model has better predictive efficacy than the random forest model [nomogram model: area under the ROC curve (AUC) of the training cohort = 0.776, with a 95% credible interval (95%CI) of 0.741-0.811; internal validation cohort AUC = 0.776, with a 95%CI of 0.718-0.833; random forest model: AUC = 0.720, with a 95%CI of 0.653-0.787], and they performed similarly in terms of calibration curves, but the nomogram performed better in terms of decision curve analysis (DCA); at the same time, the nomogram model was robust in terms of external validation cohort (external validation cohort AUC = 0.784, 95%CI was 0.692-0.876).
Conclusions: A nomogram risk prediction model for the occurrence of PCABI in critically ill patients was successfully constructed, which performs better than the random forest model, helps clinicians to identify the risk of PCABI in critically ill patients at an early stage and provides a theoretical basis for early intervention.