{"title":"[严重烧伤早期多形核中性粒细胞肺浸润的分布特征及中性粒细胞弹性酶促进肺损伤的机制]。","authors":"Xin Zhang, Chunfang Zheng, Jiahui Chen, Zaiwen Guo, Linbin Li, Jiamin Huang, Bingwei Sun","doi":"10.3760/cma.j.cn121430-20240816-00704","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To investigate the distribution characteristics of polymorphonuclear neutrophil (PMN) in the lungs during the early stage of severe burns and the mechanism of neutrophil elastase (NE) promoting lung injury.</p><p><strong>Methods: </strong>6-8-week-old male C57BL/6J mice were selected for the experiments. A 30% total body surface area (TBSA) III degree burn mouse model was established (severe burn group); the Sham-injury group was treated with 37 centigrade water. In the sodium sivelestat intervention group (SV intervention group), NE competitive inhibitor, sivelestat, 100 mg/kg, was injected via tail vein immediately after injury, while other groups received an equal volume of saline. Ten mice were harvested from each group to observe survival for 72 hours. Respiratory function tests were tested at 0 (immediate), 3, 6, 12, and 24 hours after molding. hematoxylin-eosin (HE) and immunohistochemical staining were used to observe lung tissue structure, inflammatory changes and PMN infiltration. The PMN absolute count in mice lung tissue was detected buy flow cytometry. At 6, 12, and 24 hours after molding, PMN counts and the concentration of NE [enzyme linked immunosorbent assay (ELISA)] in peripheral blood plasma, lung tissue, and bronchoalveolar lavage fluid (BALF) were detected.</p><p><strong>Results: </strong>(1) HE staining results showed that compared with the Sham-injury group, the lungs of mice in the severe burn group showed inflammatory changes and PMN infiltration, with more significant changes at 6 hours. Immunohistochemistry results also confirmed that the expression of NE protein released from PMN significantly increased after 6 hours of severe burn injury [(3.79±0.62)% vs. (0.18±0.05)%, t = 11.56, P < 0.01]. (2) Compared with the Sham-injury group, the number of PMN and the concentration of NE in the peripheral blood and lung tissues in the severe burn group were significantly increased (F values were 13.709, 55.350 and 29.890, 13.286, respectively, all P < 0.01), peaking at 6 hours [plasma PMN count (×10<sup>9</sup>/L): 2.92±1.01 vs. 0.92±0.29, lung tissue PMN absolute count (cells): 48 788.03±11 833.91 vs. 1 516.72±415.35, plasma NE (ng/L): 24 522.71±3 842.92 vs. 7 009.34±4 067.86, lung tissue NE (ng/L): 262 189.04±9 695.13 vs. 65 026.03± 16 016.31, all P < 0.01]. The number of PMN in the lung of severely burned mice was highly correlated with NE concentration (r = 0.892, P < 0.001). There was no significantly difference in the PMN absolute count in the BALF of mice between the Sham-injury group and severe burn group (F = 1.403, P > 0.05). The Sham-injury group and severe burn group contained a small amount of NE in the BALF, and the concentration of NE in the BALF of the severely burned 6 hours and 12 hours groups were significantly higher than those of the Sham-injury group (ng/L: 328.58±158.10, 415.30±240.89 vs. 61.95±15.80, both P < 0.05). (3) Kaplan-Meier survival curve showed that the 72-hour survival rate of mice in the SV intervention group was significantly higher than that in the severe burn group (100% vs. 10%, Log-Rank test: χ<sup>2</sup> = 19.12, P < 0.001). (4) Compared with the Sham-injury group, all lung function indices of the severe burn group decreased significantly. All lung function indices of SV intervention group improved gradually over time, which were significantly better than those of the severe burn group. (5) Compared with the Sham-injury group, the PMN absolute count in lung tissue and the concentration of NE in plasma and lung tissue were significantly higher in the SV intervention group (F values were 46.709, 3.535, 32.701, respectively, all P < 0.05), with a peak at 6 hours. Compared with the severe burn group, the SV intervention group had a higher PMN absolute count in lung tissue (cells: 8 870.80±7 013.89 vs. 25 974.92±22 240.8, P < 0.05), and higher plasma and lung tissue NE concentrations (ng/L: 14 955.94±3 944.41 vs. 21 972.75±4 573.05, 81 956.87±38 658.35 vs. 168 182.30±83 513.91, both P < 0.01) were significantly decreased.</p><p><strong>Conclusions: </strong>In the early stage of severe burns, there is a significant infiltration of PMN into the lungs. The NE promotes lung injury in the early stage of severe burn, and improve lung injury by inhibiting the action of NE.</p>","PeriodicalId":24079,"journal":{"name":"Zhonghua wei zhong bing ji jiu yi xue","volume":"37 5","pages":"431-437"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Distribution characteristics of polymorphonuclear neutrophil pulmonary infiltration and the mechanism of neutrophil elastase in promoting lung injury in the early stages of severe burns].\",\"authors\":\"Xin Zhang, Chunfang Zheng, Jiahui Chen, Zaiwen Guo, Linbin Li, Jiamin Huang, Bingwei Sun\",\"doi\":\"10.3760/cma.j.cn121430-20240816-00704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To investigate the distribution characteristics of polymorphonuclear neutrophil (PMN) in the lungs during the early stage of severe burns and the mechanism of neutrophil elastase (NE) promoting lung injury.</p><p><strong>Methods: </strong>6-8-week-old male C57BL/6J mice were selected for the experiments. A 30% total body surface area (TBSA) III degree burn mouse model was established (severe burn group); the Sham-injury group was treated with 37 centigrade water. In the sodium sivelestat intervention group (SV intervention group), NE competitive inhibitor, sivelestat, 100 mg/kg, was injected via tail vein immediately after injury, while other groups received an equal volume of saline. Ten mice were harvested from each group to observe survival for 72 hours. Respiratory function tests were tested at 0 (immediate), 3, 6, 12, and 24 hours after molding. hematoxylin-eosin (HE) and immunohistochemical staining were used to observe lung tissue structure, inflammatory changes and PMN infiltration. The PMN absolute count in mice lung tissue was detected buy flow cytometry. At 6, 12, and 24 hours after molding, PMN counts and the concentration of NE [enzyme linked immunosorbent assay (ELISA)] in peripheral blood plasma, lung tissue, and bronchoalveolar lavage fluid (BALF) were detected.</p><p><strong>Results: </strong>(1) HE staining results showed that compared with the Sham-injury group, the lungs of mice in the severe burn group showed inflammatory changes and PMN infiltration, with more significant changes at 6 hours. Immunohistochemistry results also confirmed that the expression of NE protein released from PMN significantly increased after 6 hours of severe burn injury [(3.79±0.62)% vs. (0.18±0.05)%, t = 11.56, P < 0.01]. (2) Compared with the Sham-injury group, the number of PMN and the concentration of NE in the peripheral blood and lung tissues in the severe burn group were significantly increased (F values were 13.709, 55.350 and 29.890, 13.286, respectively, all P < 0.01), peaking at 6 hours [plasma PMN count (×10<sup>9</sup>/L): 2.92±1.01 vs. 0.92±0.29, lung tissue PMN absolute count (cells): 48 788.03±11 833.91 vs. 1 516.72±415.35, plasma NE (ng/L): 24 522.71±3 842.92 vs. 7 009.34±4 067.86, lung tissue NE (ng/L): 262 189.04±9 695.13 vs. 65 026.03± 16 016.31, all P < 0.01]. The number of PMN in the lung of severely burned mice was highly correlated with NE concentration (r = 0.892, P < 0.001). There was no significantly difference in the PMN absolute count in the BALF of mice between the Sham-injury group and severe burn group (F = 1.403, P > 0.05). The Sham-injury group and severe burn group contained a small amount of NE in the BALF, and the concentration of NE in the BALF of the severely burned 6 hours and 12 hours groups were significantly higher than those of the Sham-injury group (ng/L: 328.58±158.10, 415.30±240.89 vs. 61.95±15.80, both P < 0.05). (3) Kaplan-Meier survival curve showed that the 72-hour survival rate of mice in the SV intervention group was significantly higher than that in the severe burn group (100% vs. 10%, Log-Rank test: χ<sup>2</sup> = 19.12, P < 0.001). (4) Compared with the Sham-injury group, all lung function indices of the severe burn group decreased significantly. All lung function indices of SV intervention group improved gradually over time, which were significantly better than those of the severe burn group. (5) Compared with the Sham-injury group, the PMN absolute count in lung tissue and the concentration of NE in plasma and lung tissue were significantly higher in the SV intervention group (F values were 46.709, 3.535, 32.701, respectively, all P < 0.05), with a peak at 6 hours. Compared with the severe burn group, the SV intervention group had a higher PMN absolute count in lung tissue (cells: 8 870.80±7 013.89 vs. 25 974.92±22 240.8, P < 0.05), and higher plasma and lung tissue NE concentrations (ng/L: 14 955.94±3 944.41 vs. 21 972.75±4 573.05, 81 956.87±38 658.35 vs. 168 182.30±83 513.91, both P < 0.01) were significantly decreased.</p><p><strong>Conclusions: </strong>In the early stage of severe burns, there is a significant infiltration of PMN into the lungs. The NE promotes lung injury in the early stage of severe burn, and improve lung injury by inhibiting the action of NE.</p>\",\"PeriodicalId\":24079,\"journal\":{\"name\":\"Zhonghua wei zhong bing ji jiu yi xue\",\"volume\":\"37 5\",\"pages\":\"431-437\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zhonghua wei zhong bing ji jiu yi xue\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3760/cma.j.cn121430-20240816-00704\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhonghua wei zhong bing ji jiu yi xue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3760/cma.j.cn121430-20240816-00704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
[Distribution characteristics of polymorphonuclear neutrophil pulmonary infiltration and the mechanism of neutrophil elastase in promoting lung injury in the early stages of severe burns].
Objective: To investigate the distribution characteristics of polymorphonuclear neutrophil (PMN) in the lungs during the early stage of severe burns and the mechanism of neutrophil elastase (NE) promoting lung injury.
Methods: 6-8-week-old male C57BL/6J mice were selected for the experiments. A 30% total body surface area (TBSA) III degree burn mouse model was established (severe burn group); the Sham-injury group was treated with 37 centigrade water. In the sodium sivelestat intervention group (SV intervention group), NE competitive inhibitor, sivelestat, 100 mg/kg, was injected via tail vein immediately after injury, while other groups received an equal volume of saline. Ten mice were harvested from each group to observe survival for 72 hours. Respiratory function tests were tested at 0 (immediate), 3, 6, 12, and 24 hours after molding. hematoxylin-eosin (HE) and immunohistochemical staining were used to observe lung tissue structure, inflammatory changes and PMN infiltration. The PMN absolute count in mice lung tissue was detected buy flow cytometry. At 6, 12, and 24 hours after molding, PMN counts and the concentration of NE [enzyme linked immunosorbent assay (ELISA)] in peripheral blood plasma, lung tissue, and bronchoalveolar lavage fluid (BALF) were detected.
Results: (1) HE staining results showed that compared with the Sham-injury group, the lungs of mice in the severe burn group showed inflammatory changes and PMN infiltration, with more significant changes at 6 hours. Immunohistochemistry results also confirmed that the expression of NE protein released from PMN significantly increased after 6 hours of severe burn injury [(3.79±0.62)% vs. (0.18±0.05)%, t = 11.56, P < 0.01]. (2) Compared with the Sham-injury group, the number of PMN and the concentration of NE in the peripheral blood and lung tissues in the severe burn group were significantly increased (F values were 13.709, 55.350 and 29.890, 13.286, respectively, all P < 0.01), peaking at 6 hours [plasma PMN count (×109/L): 2.92±1.01 vs. 0.92±0.29, lung tissue PMN absolute count (cells): 48 788.03±11 833.91 vs. 1 516.72±415.35, plasma NE (ng/L): 24 522.71±3 842.92 vs. 7 009.34±4 067.86, lung tissue NE (ng/L): 262 189.04±9 695.13 vs. 65 026.03± 16 016.31, all P < 0.01]. The number of PMN in the lung of severely burned mice was highly correlated with NE concentration (r = 0.892, P < 0.001). There was no significantly difference in the PMN absolute count in the BALF of mice between the Sham-injury group and severe burn group (F = 1.403, P > 0.05). The Sham-injury group and severe burn group contained a small amount of NE in the BALF, and the concentration of NE in the BALF of the severely burned 6 hours and 12 hours groups were significantly higher than those of the Sham-injury group (ng/L: 328.58±158.10, 415.30±240.89 vs. 61.95±15.80, both P < 0.05). (3) Kaplan-Meier survival curve showed that the 72-hour survival rate of mice in the SV intervention group was significantly higher than that in the severe burn group (100% vs. 10%, Log-Rank test: χ2 = 19.12, P < 0.001). (4) Compared with the Sham-injury group, all lung function indices of the severe burn group decreased significantly. All lung function indices of SV intervention group improved gradually over time, which were significantly better than those of the severe burn group. (5) Compared with the Sham-injury group, the PMN absolute count in lung tissue and the concentration of NE in plasma and lung tissue were significantly higher in the SV intervention group (F values were 46.709, 3.535, 32.701, respectively, all P < 0.05), with a peak at 6 hours. Compared with the severe burn group, the SV intervention group had a higher PMN absolute count in lung tissue (cells: 8 870.80±7 013.89 vs. 25 974.92±22 240.8, P < 0.05), and higher plasma and lung tissue NE concentrations (ng/L: 14 955.94±3 944.41 vs. 21 972.75±4 573.05, 81 956.87±38 658.35 vs. 168 182.30±83 513.91, both P < 0.01) were significantly decreased.
Conclusions: In the early stage of severe burns, there is a significant infiltration of PMN into the lungs. The NE promotes lung injury in the early stage of severe burn, and improve lung injury by inhibiting the action of NE.