Khyati Girdhar, Audrey Randall, Keiichiro Mine, Clarissa Howard, Alessandro Pezzella, Dogus Dogru, Lukas Rhodes, Brady James, Umesh K Gautam, Dagmar Šrůtková, Tomas Hudcovic, Juan J Aristizabal-Henao, Michael Kiebish, Emrah Altindis
{"title":"异裂副杆菌定殖对宿主微生物组、代谢组、免疫和糖尿病发病的影响","authors":"Khyati Girdhar, Audrey Randall, Keiichiro Mine, Clarissa Howard, Alessandro Pezzella, Dogus Dogru, Lukas Rhodes, Brady James, Umesh K Gautam, Dagmar Šrůtková, Tomas Hudcovic, Juan J Aristizabal-Henao, Michael Kiebish, Emrah Altindis","doi":"10.1530/JME-25-0025","DOIUrl":null,"url":null,"abstract":"<p><p>Type 1 diabetes (T1D) is caused by autoimmune destruction of pancreatic β-cells. The insulin B-chain 9-23 (insB9-23) peptide is a critical epitope in triggering T1D. In our previous study, we showed that Parabacteroides distasonis, a human gut commensal, contains an insB9-23 mimic in its hprt protein (residues 4-18). This mimic (hprt4-18) peptide activates insB9-23-specific T cells, and P. distasonis colonization enhanced diabetes in NOD mice. However, the impact of the P. distasonis colonization on inflammation, gut microbiome, intestinal immune cells, gut permeability, cytokine, and serum metabolome profiles remained unknown. Here, we investigated these effects using specific pathogen-free (SPF) and germ-free (GF) female NOD mice. P. distasonis colonization minimally impacted gut microbiome composition, altering only 28 ASVs. In P. distasonis-colonized mice, there was a reduction in T-helper, T-effector, and B-cell populations in the intraepithelial lymphocytes, indicating a potential decrease in immune activation. Furthermore, P. distasonis colonization did not alter serum metabolome and circulating cytokine profiles (except for a decrease in IL-15) and gut permeability gene expressions. P. distasonis colonization in GF NOD mice induced severe insulitis without affecting gut permeability. Interestingly, mice gavaged with heat-inactivated (HI) P. distasonis did not affect insulitis scores or immune cell composition. These findings support our hypothesis that P. distasonis functions as a gut commensal, exerting no effect on the gut microbiome, metabolome, gut permeability, intestinal immune cell composition, or nonspecific immune activation. Instead, P. distasonis appears to trigger an insB9-23-specific immune response, potentially accelerating T1D onset in NOD mice through molecular mimicry.</p>","PeriodicalId":16570,"journal":{"name":"Journal of molecular endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12400532/pdf/","citationCount":"0","resultStr":"{\"title\":\"Impact of Parabacteroides distasonis colonization on host microbiome, metabolome, immunity, and diabetes onset.\",\"authors\":\"Khyati Girdhar, Audrey Randall, Keiichiro Mine, Clarissa Howard, Alessandro Pezzella, Dogus Dogru, Lukas Rhodes, Brady James, Umesh K Gautam, Dagmar Šrůtková, Tomas Hudcovic, Juan J Aristizabal-Henao, Michael Kiebish, Emrah Altindis\",\"doi\":\"10.1530/JME-25-0025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Type 1 diabetes (T1D) is caused by autoimmune destruction of pancreatic β-cells. The insulin B-chain 9-23 (insB9-23) peptide is a critical epitope in triggering T1D. In our previous study, we showed that Parabacteroides distasonis, a human gut commensal, contains an insB9-23 mimic in its hprt protein (residues 4-18). This mimic (hprt4-18) peptide activates insB9-23-specific T cells, and P. distasonis colonization enhanced diabetes in NOD mice. However, the impact of the P. distasonis colonization on inflammation, gut microbiome, intestinal immune cells, gut permeability, cytokine, and serum metabolome profiles remained unknown. Here, we investigated these effects using specific pathogen-free (SPF) and germ-free (GF) female NOD mice. P. distasonis colonization minimally impacted gut microbiome composition, altering only 28 ASVs. In P. distasonis-colonized mice, there was a reduction in T-helper, T-effector, and B-cell populations in the intraepithelial lymphocytes, indicating a potential decrease in immune activation. Furthermore, P. distasonis colonization did not alter serum metabolome and circulating cytokine profiles (except for a decrease in IL-15) and gut permeability gene expressions. P. distasonis colonization in GF NOD mice induced severe insulitis without affecting gut permeability. Interestingly, mice gavaged with heat-inactivated (HI) P. distasonis did not affect insulitis scores or immune cell composition. These findings support our hypothesis that P. distasonis functions as a gut commensal, exerting no effect on the gut microbiome, metabolome, gut permeability, intestinal immune cell composition, or nonspecific immune activation. Instead, P. distasonis appears to trigger an insB9-23-specific immune response, potentially accelerating T1D onset in NOD mice through molecular mimicry.</p>\",\"PeriodicalId\":16570,\"journal\":{\"name\":\"Journal of molecular endocrinology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12400532/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1530/JME-25-0025\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/JME-25-0025","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/1 0:00:00","PubModel":"Print","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Impact of Parabacteroides distasonis colonization on host microbiome, metabolome, immunity, and diabetes onset.
Type 1 diabetes (T1D) is caused by autoimmune destruction of pancreatic β-cells. The insulin B-chain 9-23 (insB9-23) peptide is a critical epitope in triggering T1D. In our previous study, we showed that Parabacteroides distasonis, a human gut commensal, contains an insB9-23 mimic in its hprt protein (residues 4-18). This mimic (hprt4-18) peptide activates insB9-23-specific T cells, and P. distasonis colonization enhanced diabetes in NOD mice. However, the impact of the P. distasonis colonization on inflammation, gut microbiome, intestinal immune cells, gut permeability, cytokine, and serum metabolome profiles remained unknown. Here, we investigated these effects using specific pathogen-free (SPF) and germ-free (GF) female NOD mice. P. distasonis colonization minimally impacted gut microbiome composition, altering only 28 ASVs. In P. distasonis-colonized mice, there was a reduction in T-helper, T-effector, and B-cell populations in the intraepithelial lymphocytes, indicating a potential decrease in immune activation. Furthermore, P. distasonis colonization did not alter serum metabolome and circulating cytokine profiles (except for a decrease in IL-15) and gut permeability gene expressions. P. distasonis colonization in GF NOD mice induced severe insulitis without affecting gut permeability. Interestingly, mice gavaged with heat-inactivated (HI) P. distasonis did not affect insulitis scores or immune cell composition. These findings support our hypothesis that P. distasonis functions as a gut commensal, exerting no effect on the gut microbiome, metabolome, gut permeability, intestinal immune cell composition, or nonspecific immune activation. Instead, P. distasonis appears to trigger an insB9-23-specific immune response, potentially accelerating T1D onset in NOD mice through molecular mimicry.
期刊介绍:
The Journal of Molecular Endocrinology is an official journal of the Society for Endocrinology and is endorsed by the European Society of Endocrinology and the Endocrine Society of Australia.
Journal of Molecular Endocrinology is a leading global journal that publishes original research articles and reviews. The journal focuses on molecular and cellular mechanisms in endocrinology, including: gene regulation, cell biology, signalling, mutations, transgenics, hormone-dependant cancers, nuclear receptors, and omics. Basic and pathophysiological studies at the molecule and cell level are considered, as well as human sample studies where this is the experimental model of choice. Technique studies including CRISPR or gene editing are also encouraged.