{"title":"抑制ATM通过促进MHC-I的表达来增强三阴性乳腺癌的免疫原性。","authors":"Jiazhen Li, Chenying Liu, Xiaolong Qian, Xiaozi Wang, Hui Sun, Lu Wang, Huiqin Xue, Yuanming Song, Jiamei Liu, Yafang Zhao, Yumian Jia, Fengxia Qin, Tianhua Zhang, Xiaojing Guo","doi":"10.1038/s41419-025-07944-y","DOIUrl":null,"url":null,"abstract":"<p><p>The immunotherapy has achieved some efficacy in triple-negative breast cancer (TNBC), but the benefit population is limited, primarily due to an abnormal immune microenvironment. Thus, it is necessary to explore new molecular targets to enhance the immunogenicity of TNBC cells and improve their responsiveness to immunotherapy. We found that a key component of the DNA repair system, Ataxia telangiectasia mutated (ATM), may function as an immune response inhibitor. In this study, the inverse correlation between ATM and CD8<sup>+</sup> T cells and tumor-infiltrating lymphocytes (TILs) was confirmed by immunochemical staining of 191 TNBC specimens. Subsequently, inhibition of ATM increased the expression of major histocompatibility complex I (MHC-I) and enhanced the infiltration and cytotoxic activity of CD8<sup>+</sup> T cells by Western blot and flow cytometry analysis. In addition, we further confirmed that the MHC-I upregulation induced by ATM inhibition depends on the activation of the c-Jun/TNF-α/p-STAT1 pathway. Animal studies have shown that ATM deficiency delays tumor growth and sensitizes tumors to PD-1 blockade and radiotherapy. This study reveals a new mechanism by which ATM negatively regulates MHC-I by inhibiting the c-Jun/TNF-α/p-STAT1 pathway in TNBC, and shows an important role in mediating CD8<sup>+</sup> T cells infiltration and regulating the \"heat\" of the immune microenvironment. The combination of ATM inhibitors with radiotherapy and Immune-checkpoint blockade (ICB) therapies may be a new strategy for TNBC treatment.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"16 1","pages":"624"},"PeriodicalIF":9.6000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12361503/pdf/","citationCount":"0","resultStr":"{\"title\":\"Inhibition of ATM enhances the immunogenicity of triple-negative breast cancer by promoting MHC-I expression.\",\"authors\":\"Jiazhen Li, Chenying Liu, Xiaolong Qian, Xiaozi Wang, Hui Sun, Lu Wang, Huiqin Xue, Yuanming Song, Jiamei Liu, Yafang Zhao, Yumian Jia, Fengxia Qin, Tianhua Zhang, Xiaojing Guo\",\"doi\":\"10.1038/s41419-025-07944-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The immunotherapy has achieved some efficacy in triple-negative breast cancer (TNBC), but the benefit population is limited, primarily due to an abnormal immune microenvironment. Thus, it is necessary to explore new molecular targets to enhance the immunogenicity of TNBC cells and improve their responsiveness to immunotherapy. We found that a key component of the DNA repair system, Ataxia telangiectasia mutated (ATM), may function as an immune response inhibitor. In this study, the inverse correlation between ATM and CD8<sup>+</sup> T cells and tumor-infiltrating lymphocytes (TILs) was confirmed by immunochemical staining of 191 TNBC specimens. Subsequently, inhibition of ATM increased the expression of major histocompatibility complex I (MHC-I) and enhanced the infiltration and cytotoxic activity of CD8<sup>+</sup> T cells by Western blot and flow cytometry analysis. In addition, we further confirmed that the MHC-I upregulation induced by ATM inhibition depends on the activation of the c-Jun/TNF-α/p-STAT1 pathway. Animal studies have shown that ATM deficiency delays tumor growth and sensitizes tumors to PD-1 blockade and radiotherapy. This study reveals a new mechanism by which ATM negatively regulates MHC-I by inhibiting the c-Jun/TNF-α/p-STAT1 pathway in TNBC, and shows an important role in mediating CD8<sup>+</sup> T cells infiltration and regulating the \\\"heat\\\" of the immune microenvironment. The combination of ATM inhibitors with radiotherapy and Immune-checkpoint blockade (ICB) therapies may be a new strategy for TNBC treatment.</p>\",\"PeriodicalId\":9734,\"journal\":{\"name\":\"Cell Death & Disease\",\"volume\":\"16 1\",\"pages\":\"624\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12361503/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death & Disease\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41419-025-07944-y\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-025-07944-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Inhibition of ATM enhances the immunogenicity of triple-negative breast cancer by promoting MHC-I expression.
The immunotherapy has achieved some efficacy in triple-negative breast cancer (TNBC), but the benefit population is limited, primarily due to an abnormal immune microenvironment. Thus, it is necessary to explore new molecular targets to enhance the immunogenicity of TNBC cells and improve their responsiveness to immunotherapy. We found that a key component of the DNA repair system, Ataxia telangiectasia mutated (ATM), may function as an immune response inhibitor. In this study, the inverse correlation between ATM and CD8+ T cells and tumor-infiltrating lymphocytes (TILs) was confirmed by immunochemical staining of 191 TNBC specimens. Subsequently, inhibition of ATM increased the expression of major histocompatibility complex I (MHC-I) and enhanced the infiltration and cytotoxic activity of CD8+ T cells by Western blot and flow cytometry analysis. In addition, we further confirmed that the MHC-I upregulation induced by ATM inhibition depends on the activation of the c-Jun/TNF-α/p-STAT1 pathway. Animal studies have shown that ATM deficiency delays tumor growth and sensitizes tumors to PD-1 blockade and radiotherapy. This study reveals a new mechanism by which ATM negatively regulates MHC-I by inhibiting the c-Jun/TNF-α/p-STAT1 pathway in TNBC, and shows an important role in mediating CD8+ T cells infiltration and regulating the "heat" of the immune microenvironment. The combination of ATM inhibitors with radiotherapy and Immune-checkpoint blockade (ICB) therapies may be a new strategy for TNBC treatment.
期刊介绍:
Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism.
Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following:
Experimental medicine
Cancer
Immunity
Internal medicine
Neuroscience
Cancer metabolism