{"title":"AMPK调节ARF1定位到膜接触位点,促进脂肪酸在脂滴和线粒体之间的转移。","authors":"Lupeng Chen, Yue Liu, Junzhi Zhang, Tongxing Song, Jian Wu, Zhuqing Ren","doi":"10.1038/s41419-025-07957-7","DOIUrl":null,"url":null,"abstract":"<p><p>Lipid droplet (LD) -mitochondrion contacts play a crucial role in regulating energy metabolism and fatty acid oxidation in skeletal muscle cells. However, the proteins that regulate these interactions remain poorly understood. Here, we demonstrate that the binding between ADP-ribosylation factor 1(ARF1) and perilipin2 (Plin2) regulates LD-mitochondrion contacts under starvation conditions, facilitating the transfer of fatty acids from LDs to mitochondria. In C2C12 cells, starvation increased ARF1's GTP-binding activity and its localization to mitochondria, enhancing ARF1's binding to Plin2 and facilitating fatty acid flow from LDs to mitochondria. In contrast, knockdown of ARF1 reduced LD-mitochondrion interactions and blocked fatty acids transfer. Additionally, ARF1-mediated interactions were regulated by AMPK; inhibiting AMPK activity reduced ARF1 localization to LDs and mitochondria, and blocked LD-mitochondrion interactions. In mice, starvation increased ARF1 expression in muscle tissue and LD-mitochondrion contacts. Conversely, inhibiting ARF1 led to lipid accumulation in muscle tissue. In conclusion, our work suggests that ARF1 is a critical regulator of LD-mitochondrion interactions and plays a significant role in energy metabolism regulation in skeletal muscle.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"16 1","pages":"623"},"PeriodicalIF":9.6000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12361384/pdf/","citationCount":"0","resultStr":"{\"title\":\"AMPK regulates ARF1 localization to membrane contact sites to facilitate fatty acid transfer between lipid droplets and mitochondria.\",\"authors\":\"Lupeng Chen, Yue Liu, Junzhi Zhang, Tongxing Song, Jian Wu, Zhuqing Ren\",\"doi\":\"10.1038/s41419-025-07957-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lipid droplet (LD) -mitochondrion contacts play a crucial role in regulating energy metabolism and fatty acid oxidation in skeletal muscle cells. However, the proteins that regulate these interactions remain poorly understood. Here, we demonstrate that the binding between ADP-ribosylation factor 1(ARF1) and perilipin2 (Plin2) regulates LD-mitochondrion contacts under starvation conditions, facilitating the transfer of fatty acids from LDs to mitochondria. In C2C12 cells, starvation increased ARF1's GTP-binding activity and its localization to mitochondria, enhancing ARF1's binding to Plin2 and facilitating fatty acid flow from LDs to mitochondria. In contrast, knockdown of ARF1 reduced LD-mitochondrion interactions and blocked fatty acids transfer. Additionally, ARF1-mediated interactions were regulated by AMPK; inhibiting AMPK activity reduced ARF1 localization to LDs and mitochondria, and blocked LD-mitochondrion interactions. In mice, starvation increased ARF1 expression in muscle tissue and LD-mitochondrion contacts. Conversely, inhibiting ARF1 led to lipid accumulation in muscle tissue. In conclusion, our work suggests that ARF1 is a critical regulator of LD-mitochondrion interactions and plays a significant role in energy metabolism regulation in skeletal muscle.</p>\",\"PeriodicalId\":9734,\"journal\":{\"name\":\"Cell Death & Disease\",\"volume\":\"16 1\",\"pages\":\"623\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12361384/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death & Disease\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41419-025-07957-7\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-025-07957-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
AMPK regulates ARF1 localization to membrane contact sites to facilitate fatty acid transfer between lipid droplets and mitochondria.
Lipid droplet (LD) -mitochondrion contacts play a crucial role in regulating energy metabolism and fatty acid oxidation in skeletal muscle cells. However, the proteins that regulate these interactions remain poorly understood. Here, we demonstrate that the binding between ADP-ribosylation factor 1(ARF1) and perilipin2 (Plin2) regulates LD-mitochondrion contacts under starvation conditions, facilitating the transfer of fatty acids from LDs to mitochondria. In C2C12 cells, starvation increased ARF1's GTP-binding activity and its localization to mitochondria, enhancing ARF1's binding to Plin2 and facilitating fatty acid flow from LDs to mitochondria. In contrast, knockdown of ARF1 reduced LD-mitochondrion interactions and blocked fatty acids transfer. Additionally, ARF1-mediated interactions were regulated by AMPK; inhibiting AMPK activity reduced ARF1 localization to LDs and mitochondria, and blocked LD-mitochondrion interactions. In mice, starvation increased ARF1 expression in muscle tissue and LD-mitochondrion contacts. Conversely, inhibiting ARF1 led to lipid accumulation in muscle tissue. In conclusion, our work suggests that ARF1 is a critical regulator of LD-mitochondrion interactions and plays a significant role in energy metabolism regulation in skeletal muscle.
期刊介绍:
Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism.
Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following:
Experimental medicine
Cancer
Immunity
Internal medicine
Neuroscience
Cancer metabolism