涨潮或退潮:线粒体核苷酸的转运和代谢。

IF 4.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Thomas MacVicar
{"title":"涨潮或退潮:线粒体核苷酸的转运和代谢。","authors":"Thomas MacVicar","doi":"10.1042/BCJ20253237","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria are multifaceted organelles that support numerous cellular metabolic pathways, including the biosynthesis of nucleotides required for cell growth and proliferation. Owing to an ancient endosymbiotic origin, mitochondria contain multiple copies of their own genome and therefore demand sufficient (deoxy)nucleotides in the mitochondrial matrix for DNA replication and transcription into RNA. Disturbed mitochondrial deoxynucleotide homeostasis can lead to a decline in mitochondrial DNA abundance and integrity, causing mitochondrial diseases with diverse and severe symptoms. Mitochondrial nucleotides are not only required for nucleic acid synthesis but also for bioenergetics and mitochondrial enzymatic activity. This review first explores how mitochondria supply energy and anabolic precursors for nucleotide synthesis and how the mitochondrial network influences the spatial control of cellular nucleotide metabolism. Then follows an in-depth discussion of the mechanisms that supply mitochondria with sufficient and balanced nucleotides and why these mechanisms are relevant to human mitochondrial disease. Lastly, the review highlights the emergence of regulated mitochondrial nucleotide supply in physiological processes including innate immunity and discusses the implications of dysregulated mitochondrial and cytosolic nucleotide homeostasis in pathophysiology.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":"482 16","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12493167/pdf/","citationCount":"0","resultStr":"{\"title\":\"High tide or low tide: the transport and metabolism of mitochondrial nucleotides.\",\"authors\":\"Thomas MacVicar\",\"doi\":\"10.1042/BCJ20253237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondria are multifaceted organelles that support numerous cellular metabolic pathways, including the biosynthesis of nucleotides required for cell growth and proliferation. Owing to an ancient endosymbiotic origin, mitochondria contain multiple copies of their own genome and therefore demand sufficient (deoxy)nucleotides in the mitochondrial matrix for DNA replication and transcription into RNA. Disturbed mitochondrial deoxynucleotide homeostasis can lead to a decline in mitochondrial DNA abundance and integrity, causing mitochondrial diseases with diverse and severe symptoms. Mitochondrial nucleotides are not only required for nucleic acid synthesis but also for bioenergetics and mitochondrial enzymatic activity. This review first explores how mitochondria supply energy and anabolic precursors for nucleotide synthesis and how the mitochondrial network influences the spatial control of cellular nucleotide metabolism. Then follows an in-depth discussion of the mechanisms that supply mitochondria with sufficient and balanced nucleotides and why these mechanisms are relevant to human mitochondrial disease. Lastly, the review highlights the emergence of regulated mitochondrial nucleotide supply in physiological processes including innate immunity and discusses the implications of dysregulated mitochondrial and cytosolic nucleotide homeostasis in pathophysiology.</p>\",\"PeriodicalId\":8825,\"journal\":{\"name\":\"Biochemical Journal\",\"volume\":\"482 16\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12493167/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1042/BCJ20253237\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BCJ20253237","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

线粒体是支持多种细胞代谢途径的多面细胞器,包括细胞生长和增殖所需的核苷酸的生物合成。由于古老的内共生起源,线粒体含有自身基因组的多个拷贝,因此需要线粒体基质中足够的(脱氧)核苷酸来进行DNA复制和转录成RNA。线粒体脱氧核苷酸稳态紊乱可导致线粒体DNA丰度和完整性下降,引起多种严重症状的线粒体疾病。线粒体核苷酸不仅是核酸合成所必需的,也是生物能量学和线粒体酶活性所必需的。本文首先探讨了线粒体如何为核苷酸合成提供能量和合成代谢前体,以及线粒体网络如何影响细胞核苷酸代谢的空间控制。然后深入讨论了为线粒体提供充足和平衡的核苷酸的机制,以及为什么这些机制与人类线粒体疾病相关。最后,综述强调了在包括先天免疫在内的生理过程中出现的线粒体核苷酸供应调节,并讨论了线粒体和细胞质核苷酸稳态失调在病理生理学中的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High tide or low tide: the transport and metabolism of mitochondrial nucleotides.

Mitochondria are multifaceted organelles that support numerous cellular metabolic pathways, including the biosynthesis of nucleotides required for cell growth and proliferation. Owing to an ancient endosymbiotic origin, mitochondria contain multiple copies of their own genome and therefore demand sufficient (deoxy)nucleotides in the mitochondrial matrix for DNA replication and transcription into RNA. Disturbed mitochondrial deoxynucleotide homeostasis can lead to a decline in mitochondrial DNA abundance and integrity, causing mitochondrial diseases with diverse and severe symptoms. Mitochondrial nucleotides are not only required for nucleic acid synthesis but also for bioenergetics and mitochondrial enzymatic activity. This review first explores how mitochondria supply energy and anabolic precursors for nucleotide synthesis and how the mitochondrial network influences the spatial control of cellular nucleotide metabolism. Then follows an in-depth discussion of the mechanisms that supply mitochondria with sufficient and balanced nucleotides and why these mechanisms are relevant to human mitochondrial disease. Lastly, the review highlights the emergence of regulated mitochondrial nucleotide supply in physiological processes including innate immunity and discusses the implications of dysregulated mitochondrial and cytosolic nucleotide homeostasis in pathophysiology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemical Journal
Biochemical Journal 生物-生化与分子生物学
CiteScore
8.00
自引率
0.00%
发文量
255
审稿时长
1 months
期刊介绍: Exploring the molecular mechanisms that underpin key biological processes, the Biochemical Journal is a leading bioscience journal publishing high-impact scientific research papers and reviews on the latest advances and new mechanistic concepts in the fields of biochemistry, cellular biosciences and molecular biology. The Journal and its Editorial Board are committed to publishing work that provides a significant advance to current understanding or mechanistic insights; studies that go beyond observational work using in vitro and/or in vivo approaches are welcomed. Painless publishing: All papers undergo a rigorous peer review process; however, the Editorial Board is committed to ensuring that, if revisions are recommended, extra experiments not necessary to the paper will not be asked for. Areas covered in the journal include: Cell biology Chemical biology Energy processes Gene expression and regulation Mechanisms of disease Metabolism Molecular structure and function Plant biology Signalling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信