{"title":"Timosaponin A-III通过AMPK/mTOR通路诱导ros介导的前列腺癌细胞凋亡和保护性自噬","authors":"Jianjian Wu, Juntao Li, Qiang Guo, Chutian Xiao, Yifei Zhang, Dejuan Wang, Qiong Wu, Jianguang Qiu","doi":"10.2174/0118715206389520250805135535","DOIUrl":null,"url":null,"abstract":"<p><p>Prostate cancer, timosaponin A‑III, apoptosis, autophagy, reactive oxygen species, AMPK/mTOR.</p><p><strong>Introduction: </strong>Timosaponin A-III (TAIII) is an effective anti-tumor ingredient extracted from the rhizomes of Anemarrhena asphodeloides. However, the effect of TAIII on prostate cancer cells (PCa) and its underlying mechanisms is rarely investigated. The current study aimed to investigate the anti-tumor effect and potential mechanisms of TAIII in PCa cells.</p><p><strong>Methods: </strong>The effect of TAIII on the cell proliferation of PCa was evaluated by CCK-8 assay, colony formation assay, and EDU assay. Cell apoptosis and reactive oxygen species (ROS) production were evaluated by flow cytometry. The puncta of LC3 were detected by immunofluorescence analysis. The protein levels of apoptosis, autophagy, and AMPK/mTOR pathway were assessed by western blot. Finally, a PC3 xenograft nude mouse model was constructed to determine the effect of TAIII combined with chloroquine (CQ) in vivo.</p><p><strong>Results: </strong>Our data showed that TAIII inhibited the proliferation of PCa cells and induced ROS-dependent apoptosis. TAIII treatment dramatically promoted the formation of LC3-positive puncta, and increased the expression of LC3B-II and P62 protein. Moreover, the combination of TAIII with CQ significantly enhanced the pro-apoptosis effect of TAIII in PCa cells and the PC3 xenograft model. In addition, the activation of the AMPK/mTOR pathway and the induction of autophagy induced by TAIII were reversed by Compound C. Suppressing AMPK with Compound C enhanced the apoptosis induced by TAIII in PCa cells.</p><p><strong>Discussion: </strong>This study establishes TAIII as a potent anti-prostate-cancer agent that kills tumor cells via ROSdriven apoptosis while simultaneously triggering cytoprotective autophagy through the AMPK-mTOR axis. However, TAIII's clinical potential awaits pharmacokinetic, bioavailability, and toxicity evaluation.</p><p><strong>Conclusion: </strong>TAIII induced ROS-mediated cell apoptosis and promoted cytoprotective autophagy via the AMPK/mTOR pathway in PCa. These findings may provide a new strategy for combining TAIII with CQ together for PCa treatment.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Timosaponin A-III Induces ROS-mediated Apoptosis and Triggers Protective Autophagy via the AMPK/mTOR Pathway in Prostate Cancer.\",\"authors\":\"Jianjian Wu, Juntao Li, Qiang Guo, Chutian Xiao, Yifei Zhang, Dejuan Wang, Qiong Wu, Jianguang Qiu\",\"doi\":\"10.2174/0118715206389520250805135535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prostate cancer, timosaponin A‑III, apoptosis, autophagy, reactive oxygen species, AMPK/mTOR.</p><p><strong>Introduction: </strong>Timosaponin A-III (TAIII) is an effective anti-tumor ingredient extracted from the rhizomes of Anemarrhena asphodeloides. However, the effect of TAIII on prostate cancer cells (PCa) and its underlying mechanisms is rarely investigated. The current study aimed to investigate the anti-tumor effect and potential mechanisms of TAIII in PCa cells.</p><p><strong>Methods: </strong>The effect of TAIII on the cell proliferation of PCa was evaluated by CCK-8 assay, colony formation assay, and EDU assay. Cell apoptosis and reactive oxygen species (ROS) production were evaluated by flow cytometry. The puncta of LC3 were detected by immunofluorescence analysis. The protein levels of apoptosis, autophagy, and AMPK/mTOR pathway were assessed by western blot. Finally, a PC3 xenograft nude mouse model was constructed to determine the effect of TAIII combined with chloroquine (CQ) in vivo.</p><p><strong>Results: </strong>Our data showed that TAIII inhibited the proliferation of PCa cells and induced ROS-dependent apoptosis. TAIII treatment dramatically promoted the formation of LC3-positive puncta, and increased the expression of LC3B-II and P62 protein. Moreover, the combination of TAIII with CQ significantly enhanced the pro-apoptosis effect of TAIII in PCa cells and the PC3 xenograft model. In addition, the activation of the AMPK/mTOR pathway and the induction of autophagy induced by TAIII were reversed by Compound C. Suppressing AMPK with Compound C enhanced the apoptosis induced by TAIII in PCa cells.</p><p><strong>Discussion: </strong>This study establishes TAIII as a potent anti-prostate-cancer agent that kills tumor cells via ROSdriven apoptosis while simultaneously triggering cytoprotective autophagy through the AMPK-mTOR axis. However, TAIII's clinical potential awaits pharmacokinetic, bioavailability, and toxicity evaluation.</p><p><strong>Conclusion: </strong>TAIII induced ROS-mediated cell apoptosis and promoted cytoprotective autophagy via the AMPK/mTOR pathway in PCa. These findings may provide a new strategy for combining TAIII with CQ together for PCa treatment.</p>\",\"PeriodicalId\":7934,\"journal\":{\"name\":\"Anti-cancer agents in medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anti-cancer agents in medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0118715206389520250805135535\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-cancer agents in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0118715206389520250805135535","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Introduction: Timosaponin A-III (TAIII) is an effective anti-tumor ingredient extracted from the rhizomes of Anemarrhena asphodeloides. However, the effect of TAIII on prostate cancer cells (PCa) and its underlying mechanisms is rarely investigated. The current study aimed to investigate the anti-tumor effect and potential mechanisms of TAIII in PCa cells.
Methods: The effect of TAIII on the cell proliferation of PCa was evaluated by CCK-8 assay, colony formation assay, and EDU assay. Cell apoptosis and reactive oxygen species (ROS) production were evaluated by flow cytometry. The puncta of LC3 were detected by immunofluorescence analysis. The protein levels of apoptosis, autophagy, and AMPK/mTOR pathway were assessed by western blot. Finally, a PC3 xenograft nude mouse model was constructed to determine the effect of TAIII combined with chloroquine (CQ) in vivo.
Results: Our data showed that TAIII inhibited the proliferation of PCa cells and induced ROS-dependent apoptosis. TAIII treatment dramatically promoted the formation of LC3-positive puncta, and increased the expression of LC3B-II and P62 protein. Moreover, the combination of TAIII with CQ significantly enhanced the pro-apoptosis effect of TAIII in PCa cells and the PC3 xenograft model. In addition, the activation of the AMPK/mTOR pathway and the induction of autophagy induced by TAIII were reversed by Compound C. Suppressing AMPK with Compound C enhanced the apoptosis induced by TAIII in PCa cells.
Discussion: This study establishes TAIII as a potent anti-prostate-cancer agent that kills tumor cells via ROSdriven apoptosis while simultaneously triggering cytoprotective autophagy through the AMPK-mTOR axis. However, TAIII's clinical potential awaits pharmacokinetic, bioavailability, and toxicity evaluation.
Conclusion: TAIII induced ROS-mediated cell apoptosis and promoted cytoprotective autophagy via the AMPK/mTOR pathway in PCa. These findings may provide a new strategy for combining TAIII with CQ together for PCa treatment.
期刊介绍:
Formerly: Current Medicinal Chemistry - Anti-Cancer Agents.
Anti-Cancer Agents in Medicinal Chemistry aims to cover all the latest and outstanding developments in medicinal chemistry and rational drug design for the discovery of anti-cancer agents.
Each issue contains a series of timely in-depth reviews and guest edited issues written by leaders in the field covering a range of current topics in cancer medicinal chemistry. The journal only considers high quality research papers for publication.
Anti-Cancer Agents in Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments in cancer drug discovery.