胃肠道杯状细胞功能的神经控制。

IF 3.3 3区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY
Matthew C Rowe, Victor L Pettersson, Simona E Carbone, Jenny K Gustafsson, Daniel P Poole
{"title":"胃肠道杯状细胞功能的神经控制。","authors":"Matthew C Rowe, Victor L Pettersson, Simona E Carbone, Jenny K Gustafsson, Daniel P Poole","doi":"10.1152/ajpgi.00191.2025","DOIUrl":null,"url":null,"abstract":"<p><p>The mucus layer is an essential physical barrier that protects and lubricates mucosal surfaces in the body. The semipermeable nature of the mucus layer limits bacterial interactions with the epithelium while allowing nutrient absorption. Goblet cells (GCs) are specialized epithelial cells with a classical role to synthesize and secrete mucus to maintain the mucus layer. Emerging research has revealed the diverse nature of GC functions, including their interaction with the immune system through goblet cell-associated antigen passages to promote tolerance to dietary and bacterial antigens. Dysfunction of GCs or the mucus layer leaves the epithelium vulnerable to infection and is commonly associated with digestive disease. As such, there is a growing appreciation for the importance of GCs and the mucus layer to regulate mucosal homeostasis and protect against disease. Long-standing anatomical and pharmacological evidence indicates that the nervous system is a key regulator of GC function. However, the relative contribution from each division of the nervous system to the control of GC function is poorly defined. This is partly due to conflicting evidence from the literature and differences in experimental methods used. Furthermore, whether neurotransmitters influence GC functions and the associated mucus barrier directly or via indirect mechanisms, such as enhanced fluid secretion, remains unclear. The emergence of highly specific genetic approaches provides new opportunities to examine how specific nerve types can influence GC function. In this review, we consolidate the literature to date, with a focus on the stomach and lower gastrointestinal tract, and outline how current technologies may be useful to progress our fundamental understanding of neural-GC control.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G513-G535"},"PeriodicalIF":3.3000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural control of goblet cells in the gastrointestinal tract.\",\"authors\":\"Matthew C Rowe, Victor L Pettersson, Simona E Carbone, Jenny K Gustafsson, Daniel P Poole\",\"doi\":\"10.1152/ajpgi.00191.2025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The mucus layer is an essential physical barrier that protects and lubricates mucosal surfaces in the body. The semipermeable nature of the mucus layer limits bacterial interactions with the epithelium while allowing nutrient absorption. Goblet cells (GCs) are specialized epithelial cells with a classical role to synthesize and secrete mucus to maintain the mucus layer. Emerging research has revealed the diverse nature of GC functions, including their interaction with the immune system through goblet cell-associated antigen passages to promote tolerance to dietary and bacterial antigens. Dysfunction of GCs or the mucus layer leaves the epithelium vulnerable to infection and is commonly associated with digestive disease. As such, there is a growing appreciation for the importance of GCs and the mucus layer to regulate mucosal homeostasis and protect against disease. Long-standing anatomical and pharmacological evidence indicates that the nervous system is a key regulator of GC function. However, the relative contribution from each division of the nervous system to the control of GC function is poorly defined. This is partly due to conflicting evidence from the literature and differences in experimental methods used. Furthermore, whether neurotransmitters influence GC functions and the associated mucus barrier directly or via indirect mechanisms, such as enhanced fluid secretion, remains unclear. The emergence of highly specific genetic approaches provides new opportunities to examine how specific nerve types can influence GC function. In this review, we consolidate the literature to date, with a focus on the stomach and lower gastrointestinal tract, and outline how current technologies may be useful to progress our fundamental understanding of neural-GC control.</p>\",\"PeriodicalId\":7725,\"journal\":{\"name\":\"American journal of physiology. Gastrointestinal and liver physiology\",\"volume\":\" \",\"pages\":\"G513-G535\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Gastrointestinal and liver physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpgi.00191.2025\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Gastrointestinal and liver physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpgi.00191.2025","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

黏液层是保护和润滑身体粘膜表面的重要物理屏障。黏液层的半透性限制了细菌与上皮的相互作用,同时允许营养物质的吸收。杯状细胞(GCs)是一种特化的上皮细胞,具有合成和分泌黏液以维持黏液层的典型作用。新兴研究揭示了GC功能的多样性,包括它们通过杯状细胞相关抗原传代与免疫系统相互作用,以促进对饮食和细菌抗原的耐受性。GCs或黏液层的功能障碍使上皮易受感染,通常与消化系统疾病有关。因此,越来越多的人认识到GCs和黏液层在调节粘膜稳态和预防疾病方面的重要性。长期存在的解剖学和药理学证据表明,神经系统是GC功能的关键调节器。然而,神经系统各分支对GC功能控制的相对贡献尚未明确。这部分是由于文献证据的矛盾和实验方法的不同。此外,神经递质是否直接或通过间接机制(如增强液体分泌)影响GC功能和相关粘液屏障仍不清楚。高度特异性遗传方法的出现为研究特定神经类型如何影响GC功能提供了新的机会。在这篇综述中,我们整合了迄今为止的文献,重点关注胃和下胃肠道,并概述了当前技术如何有助于提高我们对神经gc控制的基本理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural control of goblet cells in the gastrointestinal tract.

The mucus layer is an essential physical barrier that protects and lubricates mucosal surfaces in the body. The semipermeable nature of the mucus layer limits bacterial interactions with the epithelium while allowing nutrient absorption. Goblet cells (GCs) are specialized epithelial cells with a classical role to synthesize and secrete mucus to maintain the mucus layer. Emerging research has revealed the diverse nature of GC functions, including their interaction with the immune system through goblet cell-associated antigen passages to promote tolerance to dietary and bacterial antigens. Dysfunction of GCs or the mucus layer leaves the epithelium vulnerable to infection and is commonly associated with digestive disease. As such, there is a growing appreciation for the importance of GCs and the mucus layer to regulate mucosal homeostasis and protect against disease. Long-standing anatomical and pharmacological evidence indicates that the nervous system is a key regulator of GC function. However, the relative contribution from each division of the nervous system to the control of GC function is poorly defined. This is partly due to conflicting evidence from the literature and differences in experimental methods used. Furthermore, whether neurotransmitters influence GC functions and the associated mucus barrier directly or via indirect mechanisms, such as enhanced fluid secretion, remains unclear. The emergence of highly specific genetic approaches provides new opportunities to examine how specific nerve types can influence GC function. In this review, we consolidate the literature to date, with a focus on the stomach and lower gastrointestinal tract, and outline how current technologies may be useful to progress our fundamental understanding of neural-GC control.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.40
自引率
2.20%
发文量
104
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Gastrointestinal and Liver Physiology publishes original articles pertaining to all aspects of research involving normal or abnormal function of the gastrointestinal tract, hepatobiliary system, and pancreas. Authors are encouraged to submit manuscripts dealing with growth and development, digestion, secretion, absorption, metabolism, and motility relative to these organs, as well as research reports dealing with immune and inflammatory processes and with neural, endocrine, and circulatory control mechanisms that affect these organs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信