{"title":"具有简单苯衍生物取代的极性不敏感的三苯基甲基型发光有机自由基","authors":"Zhuoyang Hu, Mehrigul Abdulahat, Zhaoze Ding, Fudong Ma, Xuanwan Li, Ayixiemuguli Tuersun, Ablikim Obolda, Haoqing Guo","doi":"10.1002/cptc.202500105","DOIUrl":null,"url":null,"abstract":"<p>This study focuses on the impact of alternant phenyl substituents on the photophysical properties of tris-(2,4,6-trichlorophenyl)methyl (TTM)-type radicals. Most donor–acceptor-type luminescent systems show solvent-polarity sensitivity, which limits their applications. Herein, three alternate π-conjugated biphenyl/terphenyl substituents are attached to the TTM unit. Results reveal that connection modes and types of benzene ring derivatives lead to distinct charge transfer (CT) and locally excited state hybrid emitters due to the differences in conjugation degree. All three radicals exhibit polarity-insensitive red emission (626–690 nm), and their photoluminescence quantum yields (PLQYs) increase with solvent polarity. Specifically, linear-conjugated TTM-DPh has higher photostability but lower PLQY, while nonlinear-conjugated TTM-3DPh and TTM-TPh have nearly 10-fold higher PLQYs. The photophysical studies suggest that the conjugation degree and hybridization level between CT and ground states account for these properties.</p>","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":"9 8","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polarity-Insensitive Triphenylmethyl-Type Luminescent Organic Radicals with Simple Benzene Derivative Substitution\",\"authors\":\"Zhuoyang Hu, Mehrigul Abdulahat, Zhaoze Ding, Fudong Ma, Xuanwan Li, Ayixiemuguli Tuersun, Ablikim Obolda, Haoqing Guo\",\"doi\":\"10.1002/cptc.202500105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study focuses on the impact of alternant phenyl substituents on the photophysical properties of tris-(2,4,6-trichlorophenyl)methyl (TTM)-type radicals. Most donor–acceptor-type luminescent systems show solvent-polarity sensitivity, which limits their applications. Herein, three alternate π-conjugated biphenyl/terphenyl substituents are attached to the TTM unit. Results reveal that connection modes and types of benzene ring derivatives lead to distinct charge transfer (CT) and locally excited state hybrid emitters due to the differences in conjugation degree. All three radicals exhibit polarity-insensitive red emission (626–690 nm), and their photoluminescence quantum yields (PLQYs) increase with solvent polarity. Specifically, linear-conjugated TTM-DPh has higher photostability but lower PLQY, while nonlinear-conjugated TTM-3DPh and TTM-TPh have nearly 10-fold higher PLQYs. The photophysical studies suggest that the conjugation degree and hybridization level between CT and ground states account for these properties.</p>\",\"PeriodicalId\":10108,\"journal\":{\"name\":\"ChemPhotoChem\",\"volume\":\"9 8\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemPhotoChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cptc.202500105\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPhotoChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cptc.202500105","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Polarity-Insensitive Triphenylmethyl-Type Luminescent Organic Radicals with Simple Benzene Derivative Substitution
This study focuses on the impact of alternant phenyl substituents on the photophysical properties of tris-(2,4,6-trichlorophenyl)methyl (TTM)-type radicals. Most donor–acceptor-type luminescent systems show solvent-polarity sensitivity, which limits their applications. Herein, three alternate π-conjugated biphenyl/terphenyl substituents are attached to the TTM unit. Results reveal that connection modes and types of benzene ring derivatives lead to distinct charge transfer (CT) and locally excited state hybrid emitters due to the differences in conjugation degree. All three radicals exhibit polarity-insensitive red emission (626–690 nm), and their photoluminescence quantum yields (PLQYs) increase with solvent polarity. Specifically, linear-conjugated TTM-DPh has higher photostability but lower PLQY, while nonlinear-conjugated TTM-3DPh and TTM-TPh have nearly 10-fold higher PLQYs. The photophysical studies suggest that the conjugation degree and hybridization level between CT and ground states account for these properties.
ChemPhotoChemChemistry-Physical and Theoretical Chemistry
CiteScore
5.80
自引率
5.40%
发文量
165
期刊介绍:
Light plays a crucial role in natural processes and leads to exciting phenomena in molecules and materials. ChemPhotoChem welcomes exceptional international research in the entire scope of pure and applied photochemistry, photobiology, and photophysics. Our thorough editorial practices aid us in publishing authoritative research fast. We support the photochemistry community to be a leading light in science.
We understand the huge pressures the scientific community is facing every day and we want to support you. Chemistry Europe is an association of 16 chemical societies from 15 European countries. Run by chemists, for chemists—we evaluate, publish, disseminate, and amplify the scientific excellence of chemistry researchers from around the globe.