基于自编码器的永磁体无损磁化降维估计

IF 1.3 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Kazuki Igarashi, Hidenori Sasaki
{"title":"基于自编码器的永磁体无损磁化降维估计","authors":"Kazuki Igarashi,&nbsp;Hidenori Sasaki","doi":"10.1049/smt2.70024","DOIUrl":null,"url":null,"abstract":"<p>A magnetisation estimation method that uses an autoencoder (AE) model with a convolutional neural network (CNN) is proposed. The proposed method achieved high accuracy even for complex magnetisation distributions, including defective regions. The proposed model improved estimation accuracy by over 50.62% compared to the conventional multi-layer perceptron method. Additionally, the proposed model is effective for multi-output regression problems involving multidimensional vectors. This method enables non-destructive and rapid estimation of internal magnetisation in permanent magnets from external magnetic flux density.</p>","PeriodicalId":54999,"journal":{"name":"Iet Science Measurement & Technology","volume":"19 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/smt2.70024","citationCount":"0","resultStr":"{\"title\":\"Nondestructive Magnetisation Estimation for Permanent Magnets Using Autoencoder-Based Dimensionality Reduction\",\"authors\":\"Kazuki Igarashi,&nbsp;Hidenori Sasaki\",\"doi\":\"10.1049/smt2.70024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A magnetisation estimation method that uses an autoencoder (AE) model with a convolutional neural network (CNN) is proposed. The proposed method achieved high accuracy even for complex magnetisation distributions, including defective regions. The proposed model improved estimation accuracy by over 50.62% compared to the conventional multi-layer perceptron method. Additionally, the proposed model is effective for multi-output regression problems involving multidimensional vectors. This method enables non-destructive and rapid estimation of internal magnetisation in permanent magnets from external magnetic flux density.</p>\",\"PeriodicalId\":54999,\"journal\":{\"name\":\"Iet Science Measurement & Technology\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/smt2.70024\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Science Measurement & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/smt2.70024\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Science Measurement & Technology","FirstCategoryId":"5","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/smt2.70024","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于卷积神经网络(CNN)的自编码器(AE)模型的磁化估计方法。所提出的方法即使在复杂的磁化分布(包括缺陷区域)中也具有很高的精度。与传统的多层感知器方法相比,该模型的估计精度提高了50.62%以上。此外,该模型对于涉及多维向量的多输出回归问题是有效的。这种方法可以从外部磁通密度非破坏性地快速估计永磁体的内部磁化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nondestructive Magnetisation Estimation for Permanent Magnets Using Autoencoder-Based Dimensionality Reduction

Nondestructive Magnetisation Estimation for Permanent Magnets Using Autoencoder-Based Dimensionality Reduction

Nondestructive Magnetisation Estimation for Permanent Magnets Using Autoencoder-Based Dimensionality Reduction

Nondestructive Magnetisation Estimation for Permanent Magnets Using Autoencoder-Based Dimensionality Reduction

Nondestructive Magnetisation Estimation for Permanent Magnets Using Autoencoder-Based Dimensionality Reduction

A magnetisation estimation method that uses an autoencoder (AE) model with a convolutional neural network (CNN) is proposed. The proposed method achieved high accuracy even for complex magnetisation distributions, including defective regions. The proposed model improved estimation accuracy by over 50.62% compared to the conventional multi-layer perceptron method. Additionally, the proposed model is effective for multi-output regression problems involving multidimensional vectors. This method enables non-destructive and rapid estimation of internal magnetisation in permanent magnets from external magnetic flux density.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iet Science Measurement & Technology
Iet Science Measurement & Technology 工程技术-工程:电子与电气
CiteScore
4.30
自引率
7.10%
发文量
41
审稿时长
7.5 months
期刊介绍: IET Science, Measurement & Technology publishes papers in science, engineering and technology underpinning electronic and electrical engineering, nanotechnology and medical instrumentation.The emphasis of the journal is on theory, simulation methodologies and measurement techniques. The major themes of the journal are: - electromagnetism including electromagnetic theory, computational electromagnetics and EMC - properties and applications of dielectric, magnetic, magneto-optic, piezoelectric materials down to the nanometre scale - measurement and instrumentation including sensors, actuators, medical instrumentation, fundamentals of measurement including measurement standards, uncertainty, dissemination and calibration Applications are welcome for illustrative purposes but the novelty and originality should focus on the proposed new methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信