转录谱分析指导谱系不明确的急性白血病分类为AML、B-ALL或T-ALL

IF 14.6 2区 医学 Q1 HEMATOLOGY
HemaSphere Pub Date : 2025-08-19 DOI:10.1002/hem3.70195
Roger Mulet-Lazaro, Anikó Sijs-Szabó, Remco M. Hoogenboezem, Stanley van Herk, Carla Exalto, Jasper E. Koenders, Patricia G. Hoogeveen, François G. Kavelaars, Anita M. Schelen, Willemijn van den Ancker, Arjan A. van de Loosdrecht, Charles G. Mullighan, H. Berna Beverloo, Vincent van der Velden, Jan J. Cornelissen, Peter J. M. Valk, Anita W. Rijneveld, Mathijs A. Sanders
{"title":"转录谱分析指导谱系不明确的急性白血病分类为AML、B-ALL或T-ALL","authors":"Roger Mulet-Lazaro,&nbsp;Anikó Sijs-Szabó,&nbsp;Remco M. Hoogenboezem,&nbsp;Stanley van Herk,&nbsp;Carla Exalto,&nbsp;Jasper E. Koenders,&nbsp;Patricia G. Hoogeveen,&nbsp;François G. Kavelaars,&nbsp;Anita M. Schelen,&nbsp;Willemijn van den Ancker,&nbsp;Arjan A. van de Loosdrecht,&nbsp;Charles G. Mullighan,&nbsp;H. Berna Beverloo,&nbsp;Vincent van der Velden,&nbsp;Jan J. Cornelissen,&nbsp;Peter J. M. Valk,&nbsp;Anita W. Rijneveld,&nbsp;Mathijs A. Sanders","doi":"10.1002/hem3.70195","DOIUrl":null,"url":null,"abstract":"<p>Acute leukemia of ambiguous lineage (ALAL) is a rare, poor-prognosis acute leukemia subtype that cannot be assigned to a single hematopoietic lineage. Although ALAL patients are typically treated with acute myeloid leukemia (AML) or acute lymphoblastic leukemia (ALL) regimens, optimal treatment choice is hindered by their lineage ambiguity. Therefore, we investigated the added value of transcriptomics for improving lineage assignment, currently based mainly on surface markers. First, we used an in-house pipeline to detect genetic lesions in RNA sequencing data (<i>n</i> = 30) with a sensitivity &gt; 90% for small variants. Second, we compared ALAL gene expression profiles (GEPs) with representative AML (<i>n</i> = 145), B-ALL (<i>n</i> = 223), and T-ALL (<i>n</i> = 85) cases. In a principal component analysis (PCA), ALALs did not form a clear separate group, as most clustered with AML, B-ALL, or T-ALL. Accordingly, a machine learning classifier trained with GEPs of acute leukemias segregated 27/30 ALALs into myeloid-, B-, or T-lymphoid. These 27 cases harbored genetic abnormalities consistent with the classifier-assigned leukemia. Furthermore, deconvolution of ALAL GEPs revealed enrichment for signatures of normal hematopoietic cells corresponding to the leukemic type predicted by our algorithm. The classifier was also applied on an external ALAL cohort (<i>n</i> = 24), assigning 75% of the patients to a lineage matching their immunophenotypic and methylation profiles. In conclusion, integrative analysis of RNA sequencing data can accurately classify most ALAL cases as lineage-defined, while others show true transcriptional and epigenetic ambiguity driven by lesions like <i>BCL11B</i>. The pipeline and classifier developed here are valuable tools to improve ALAL diagnosis and guide therapeutic decisions.</p>","PeriodicalId":12982,"journal":{"name":"HemaSphere","volume":"9 8","pages":""},"PeriodicalIF":14.6000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hem3.70195","citationCount":"0","resultStr":"{\"title\":\"Transcriptional profiling directs the classification of acute leukemias of ambiguous lineage into AML, B-ALL, or T-ALL\",\"authors\":\"Roger Mulet-Lazaro,&nbsp;Anikó Sijs-Szabó,&nbsp;Remco M. Hoogenboezem,&nbsp;Stanley van Herk,&nbsp;Carla Exalto,&nbsp;Jasper E. Koenders,&nbsp;Patricia G. Hoogeveen,&nbsp;François G. Kavelaars,&nbsp;Anita M. Schelen,&nbsp;Willemijn van den Ancker,&nbsp;Arjan A. van de Loosdrecht,&nbsp;Charles G. Mullighan,&nbsp;H. Berna Beverloo,&nbsp;Vincent van der Velden,&nbsp;Jan J. Cornelissen,&nbsp;Peter J. M. Valk,&nbsp;Anita W. Rijneveld,&nbsp;Mathijs A. Sanders\",\"doi\":\"10.1002/hem3.70195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Acute leukemia of ambiguous lineage (ALAL) is a rare, poor-prognosis acute leukemia subtype that cannot be assigned to a single hematopoietic lineage. Although ALAL patients are typically treated with acute myeloid leukemia (AML) or acute lymphoblastic leukemia (ALL) regimens, optimal treatment choice is hindered by their lineage ambiguity. Therefore, we investigated the added value of transcriptomics for improving lineage assignment, currently based mainly on surface markers. First, we used an in-house pipeline to detect genetic lesions in RNA sequencing data (<i>n</i> = 30) with a sensitivity &gt; 90% for small variants. Second, we compared ALAL gene expression profiles (GEPs) with representative AML (<i>n</i> = 145), B-ALL (<i>n</i> = 223), and T-ALL (<i>n</i> = 85) cases. In a principal component analysis (PCA), ALALs did not form a clear separate group, as most clustered with AML, B-ALL, or T-ALL. Accordingly, a machine learning classifier trained with GEPs of acute leukemias segregated 27/30 ALALs into myeloid-, B-, or T-lymphoid. These 27 cases harbored genetic abnormalities consistent with the classifier-assigned leukemia. Furthermore, deconvolution of ALAL GEPs revealed enrichment for signatures of normal hematopoietic cells corresponding to the leukemic type predicted by our algorithm. The classifier was also applied on an external ALAL cohort (<i>n</i> = 24), assigning 75% of the patients to a lineage matching their immunophenotypic and methylation profiles. In conclusion, integrative analysis of RNA sequencing data can accurately classify most ALAL cases as lineage-defined, while others show true transcriptional and epigenetic ambiguity driven by lesions like <i>BCL11B</i>. The pipeline and classifier developed here are valuable tools to improve ALAL diagnosis and guide therapeutic decisions.</p>\",\"PeriodicalId\":12982,\"journal\":{\"name\":\"HemaSphere\",\"volume\":\"9 8\",\"pages\":\"\"},\"PeriodicalIF\":14.6000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hem3.70195\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HemaSphere\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hem3.70195\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HemaSphere","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hem3.70195","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

急性白血病的模糊谱系(ALAL)是一种罕见的,预后差的急性白血病亚型,不能分配到单一的造血谱系。尽管ALAL患者通常以急性髓性白血病(AML)或急性淋巴细胞白血病(ALL)方案治疗,但由于其谱系不明确,阻碍了最佳治疗选择。因此,我们研究了转录组学在改善谱系分配方面的附加价值,目前主要基于表面标记。首先,我们使用内部管道检测RNA测序数据中的遗传病变(n = 30),对小变异的灵敏度为90%。其次,我们比较了ALAL基因表达谱(GEPs)与典型的AML (n = 145)、B-ALL (n = 223)和T-ALL (n = 85)病例。在主成分分析(PCA)中,ALALs没有形成一个明确的单独组,因为大多数与AML, B-ALL或T-ALL聚集在一起。因此,用急性白血病的gep训练的机器学习分类器将27/30个ALALs分为髓系、B系或t淋巴系。这27例患者的遗传异常与分类分配白血病一致。此外,ALAL GEPs的反卷积显示了与我们的算法预测的白血病类型对应的正常造血细胞特征的富集。该分类器也应用于外部ALAL队列(n = 24),将75%的患者分配到与其免疫表型和甲基化谱相匹配的谱系。总之,RNA测序数据的综合分析可以准确地将大多数ALAL病例分类为谱系定义,而其他病例则显示由BCL11B等病变驱动的真正的转录和表观遗传模糊。这里开发的管道和分类器是提高ALAL诊断和指导治疗决策的有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Transcriptional profiling directs the classification of acute leukemias of ambiguous lineage into AML, B-ALL, or T-ALL

Transcriptional profiling directs the classification of acute leukemias of ambiguous lineage into AML, B-ALL, or T-ALL

Acute leukemia of ambiguous lineage (ALAL) is a rare, poor-prognosis acute leukemia subtype that cannot be assigned to a single hematopoietic lineage. Although ALAL patients are typically treated with acute myeloid leukemia (AML) or acute lymphoblastic leukemia (ALL) regimens, optimal treatment choice is hindered by their lineage ambiguity. Therefore, we investigated the added value of transcriptomics for improving lineage assignment, currently based mainly on surface markers. First, we used an in-house pipeline to detect genetic lesions in RNA sequencing data (n = 30) with a sensitivity > 90% for small variants. Second, we compared ALAL gene expression profiles (GEPs) with representative AML (n = 145), B-ALL (n = 223), and T-ALL (n = 85) cases. In a principal component analysis (PCA), ALALs did not form a clear separate group, as most clustered with AML, B-ALL, or T-ALL. Accordingly, a machine learning classifier trained with GEPs of acute leukemias segregated 27/30 ALALs into myeloid-, B-, or T-lymphoid. These 27 cases harbored genetic abnormalities consistent with the classifier-assigned leukemia. Furthermore, deconvolution of ALAL GEPs revealed enrichment for signatures of normal hematopoietic cells corresponding to the leukemic type predicted by our algorithm. The classifier was also applied on an external ALAL cohort (n = 24), assigning 75% of the patients to a lineage matching their immunophenotypic and methylation profiles. In conclusion, integrative analysis of RNA sequencing data can accurately classify most ALAL cases as lineage-defined, while others show true transcriptional and epigenetic ambiguity driven by lesions like BCL11B. The pipeline and classifier developed here are valuable tools to improve ALAL diagnosis and guide therapeutic decisions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
HemaSphere
HemaSphere Medicine-Hematology
CiteScore
6.10
自引率
4.50%
发文量
2776
审稿时长
7 weeks
期刊介绍: HemaSphere, as a publication, is dedicated to disseminating the outcomes of profoundly pertinent basic, translational, and clinical research endeavors within the field of hematology. The journal actively seeks robust studies that unveil novel discoveries with significant ramifications for hematology. In addition to original research, HemaSphere features review articles and guideline articles that furnish lucid synopses and discussions of emerging developments, along with recommendations for patient care. Positioned as the foremost resource in hematology, HemaSphere augments its offerings with specialized sections like HemaTopics and HemaPolicy. These segments engender insightful dialogues covering a spectrum of hematology-related topics, including digestible summaries of pivotal articles, updates on new therapies, deliberations on European policy matters, and other noteworthy news items within the field. Steering the course of HemaSphere are Editor in Chief Jan Cools and Deputy Editor in Chief Claire Harrison, alongside the guidance of an esteemed Editorial Board comprising international luminaries in both research and clinical realms, each representing diverse areas of hematologic expertise.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信