{"title":"rock介导的肌动蛋白重塑有助于减少弯曲细胞的增殖和迁移氟苯尼考治疗内皮细胞","authors":"Dongfang Hu, Zihui Shen, Xueke Hou, Zhishuai Wan, Xiaoyu Guo, Lingli Chen, Zhihong Yin, Hongmei Ning, Yaming Ge","doi":"10.1002/jbt.70453","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Florfenicol (FLO), a widely used antibiotic, can cause early embryonic death and impaired angiogenesis. However, the mechanism by which FLO inhibits angiogenesis and its role in FLO-induced embryonic toxicity are not yet fully understood. This study aimed to investigate the effect of FLO on the proliferation and migration of mouse bEnd.3 endothelial cells (bECs) and the underlying mechanism, given the crucial role of endothelial cells in angiogenesis. The results showed that FLO treatment at 7.5–15 μg/mL significantly inhibited proliferation and migration in a time-dependent manner, with stronger effects observed after 48 h compared to 24 h. RNA sequencing analysis identified 1351 genes differentially expressed in response to FLO. Functional analysis indicated that FLO disrupted ATP metabolism, angiogenesis, vasculature development, and actin filament organization. The F-actin cytoskeleton remodeling was morphologically confirmed, and activation of the ROCK/Cofilin signaling pathway was detected. Subsequent experiments demonstrated that pharmacological inhibition of the pathway normalized cytoskeletal rearrangement and promoted angiogenesis, as evidenced by enhanced wound closure and increased cell viability. Our results demonstrated that ROCK-mediated F-actin remodeling plays a crucial role in the FLO-induced inhibition of proliferation and migration in bECs. These findings may explain why FLO inhibited angiogenesis. However, further investigations are necessary to validate our findings in in vivo experiments.</p></div>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"39 9","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ROCK-Mediated Actin Remodeling Contributes to the Reduced Proliferation and Migration of bEnd.3 Endothelial Cells Treated With Florfenicol\",\"authors\":\"Dongfang Hu, Zihui Shen, Xueke Hou, Zhishuai Wan, Xiaoyu Guo, Lingli Chen, Zhihong Yin, Hongmei Ning, Yaming Ge\",\"doi\":\"10.1002/jbt.70453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Florfenicol (FLO), a widely used antibiotic, can cause early embryonic death and impaired angiogenesis. However, the mechanism by which FLO inhibits angiogenesis and its role in FLO-induced embryonic toxicity are not yet fully understood. This study aimed to investigate the effect of FLO on the proliferation and migration of mouse bEnd.3 endothelial cells (bECs) and the underlying mechanism, given the crucial role of endothelial cells in angiogenesis. The results showed that FLO treatment at 7.5–15 μg/mL significantly inhibited proliferation and migration in a time-dependent manner, with stronger effects observed after 48 h compared to 24 h. RNA sequencing analysis identified 1351 genes differentially expressed in response to FLO. Functional analysis indicated that FLO disrupted ATP metabolism, angiogenesis, vasculature development, and actin filament organization. The F-actin cytoskeleton remodeling was morphologically confirmed, and activation of the ROCK/Cofilin signaling pathway was detected. Subsequent experiments demonstrated that pharmacological inhibition of the pathway normalized cytoskeletal rearrangement and promoted angiogenesis, as evidenced by enhanced wound closure and increased cell viability. Our results demonstrated that ROCK-mediated F-actin remodeling plays a crucial role in the FLO-induced inhibition of proliferation and migration in bECs. These findings may explain why FLO inhibited angiogenesis. However, further investigations are necessary to validate our findings in in vivo experiments.</p></div>\",\"PeriodicalId\":15151,\"journal\":{\"name\":\"Journal of Biochemical and Molecular Toxicology\",\"volume\":\"39 9\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biochemical and Molecular Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70453\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70453","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
ROCK-Mediated Actin Remodeling Contributes to the Reduced Proliferation and Migration of bEnd.3 Endothelial Cells Treated With Florfenicol
Florfenicol (FLO), a widely used antibiotic, can cause early embryonic death and impaired angiogenesis. However, the mechanism by which FLO inhibits angiogenesis and its role in FLO-induced embryonic toxicity are not yet fully understood. This study aimed to investigate the effect of FLO on the proliferation and migration of mouse bEnd.3 endothelial cells (bECs) and the underlying mechanism, given the crucial role of endothelial cells in angiogenesis. The results showed that FLO treatment at 7.5–15 μg/mL significantly inhibited proliferation and migration in a time-dependent manner, with stronger effects observed after 48 h compared to 24 h. RNA sequencing analysis identified 1351 genes differentially expressed in response to FLO. Functional analysis indicated that FLO disrupted ATP metabolism, angiogenesis, vasculature development, and actin filament organization. The F-actin cytoskeleton remodeling was morphologically confirmed, and activation of the ROCK/Cofilin signaling pathway was detected. Subsequent experiments demonstrated that pharmacological inhibition of the pathway normalized cytoskeletal rearrangement and promoted angiogenesis, as evidenced by enhanced wound closure and increased cell viability. Our results demonstrated that ROCK-mediated F-actin remodeling plays a crucial role in the FLO-induced inhibition of proliferation and migration in bECs. These findings may explain why FLO inhibited angiogenesis. However, further investigations are necessary to validate our findings in in vivo experiments.
期刊介绍:
The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.