{"title":"给体-桥体-受体取向和化学修饰如何影响硼基发射体的热激活延迟荧光能力","authors":"Jeremy M. Kaminski, Tu V. Chu, Christel M. Marian","doi":"10.1002/cptc.202500033","DOIUrl":null,"url":null,"abstract":"<p>The photophysical properties of a series of thermally activated delayed fluorescence emitters, comprising a nitrogen-based donor, a phenylene bridge and a boron-based acceptor, are investigated using a combination of density functional theory and multi-reference configuration interaction methods. In addition to singlet and triplet charge-transfer (CT) states, an acceptor-localized low-lying triplet state is found in all compounds. The size of the singlet–triplet gap and the energetic order of the CT and locally excited (LE) states can be modulated by regioisomerism (<i>ortho</i>- or <i>para</i>-linkage) and the chemical modification of the subunits. Spin-vibronic interactions, introduced through a Herzberg–Teller-type approach, are found to accelerate the intersystem crossing process considerably provided that the CT and LE states are close in energy.</p>","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":"9 8","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cptc.202500033","citationCount":"0","resultStr":"{\"title\":\"How Donor–Bridge–Acceptor Orientation and Chemical Modification Affect the Thermally Activated Delayed Fluorescence Abilities of Boron-Based Emitters\",\"authors\":\"Jeremy M. Kaminski, Tu V. Chu, Christel M. Marian\",\"doi\":\"10.1002/cptc.202500033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The photophysical properties of a series of thermally activated delayed fluorescence emitters, comprising a nitrogen-based donor, a phenylene bridge and a boron-based acceptor, are investigated using a combination of density functional theory and multi-reference configuration interaction methods. In addition to singlet and triplet charge-transfer (CT) states, an acceptor-localized low-lying triplet state is found in all compounds. The size of the singlet–triplet gap and the energetic order of the CT and locally excited (LE) states can be modulated by regioisomerism (<i>ortho</i>- or <i>para</i>-linkage) and the chemical modification of the subunits. Spin-vibronic interactions, introduced through a Herzberg–Teller-type approach, are found to accelerate the intersystem crossing process considerably provided that the CT and LE states are close in energy.</p>\",\"PeriodicalId\":10108,\"journal\":{\"name\":\"ChemPhotoChem\",\"volume\":\"9 8\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cptc.202500033\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemPhotoChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cptc.202500033\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPhotoChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cptc.202500033","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
How Donor–Bridge–Acceptor Orientation and Chemical Modification Affect the Thermally Activated Delayed Fluorescence Abilities of Boron-Based Emitters
The photophysical properties of a series of thermally activated delayed fluorescence emitters, comprising a nitrogen-based donor, a phenylene bridge and a boron-based acceptor, are investigated using a combination of density functional theory and multi-reference configuration interaction methods. In addition to singlet and triplet charge-transfer (CT) states, an acceptor-localized low-lying triplet state is found in all compounds. The size of the singlet–triplet gap and the energetic order of the CT and locally excited (LE) states can be modulated by regioisomerism (ortho- or para-linkage) and the chemical modification of the subunits. Spin-vibronic interactions, introduced through a Herzberg–Teller-type approach, are found to accelerate the intersystem crossing process considerably provided that the CT and LE states are close in energy.
ChemPhotoChemChemistry-Physical and Theoretical Chemistry
CiteScore
5.80
自引率
5.40%
发文量
165
期刊介绍:
Light plays a crucial role in natural processes and leads to exciting phenomena in molecules and materials. ChemPhotoChem welcomes exceptional international research in the entire scope of pure and applied photochemistry, photobiology, and photophysics. Our thorough editorial practices aid us in publishing authoritative research fast. We support the photochemistry community to be a leading light in science.
We understand the huge pressures the scientific community is facing every day and we want to support you. Chemistry Europe is an association of 16 chemical societies from 15 European countries. Run by chemists, for chemists—we evaluate, publish, disseminate, and amplify the scientific excellence of chemistry researchers from around the globe.