Chaolong Hao, Quangong Ma, Dan Qu, Dawei Shi, Xukui Yang, Buyu Liu
{"title":"单泡利信道上基于改进的steane码生成器投影方向的量子直接隐写方案","authors":"Chaolong Hao, Quangong Ma, Dan Qu, Dawei Shi, Xukui Yang, Buyu Liu","doi":"10.1007/s11128-025-04880-w","DOIUrl":null,"url":null,"abstract":"<div><p>In quantum mechanics, measurements of a quantum state in various directions yield distinct outcomes, a principle that forms the foundation of quantum communication theory. This paper expands upon this concept by introducing a method to modify generator projection directions (MGPD) within quantum stabilizer codes. Employing the Steane code ((7, 1, 3) code), as a fundamental carrier, we develop a novel scheme for direct quantum steganography across a single-type Pauli channel. The infeasibility of eavesdropping decoding under MGPD is proven. We detail the steganographic encoding and decoding schemes, corresponding quantum circuits, and eavesdropping detection principles. We also use a ‘Sudoku’-style strategy to balance steganographic error probabilities and provide the complete steganography protocol. Relative to existing studies, the MGPD method achieves embedding rates approaching and attaining the upper limit of the information capacity for the <span>\\((n,k,d)=(7,1,3)\\)</span> code within a noise probability range of approximately <span>\\(1/(n+1)=12.5\\%\\)</span>. It also reduces the consumption of auxiliary keys from <span>\\(O(\\log {(N)})\\)</span> to <i>O</i>(1), while enabling eavesdropping detection and steganography of arbitrary quantum states. We investigate its potential applications in quantum communication and assess its benefits in the context of secret information transmission and eavesdropping detection in noisy channels. Although the MGPD method incorporates certain idealized assumptions and limitations, it provides novel perspectives on the concealment of quantum information.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 9","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum direct steganography scheme based on modified generator projection directions of steane code over a single-type Pauli channel\",\"authors\":\"Chaolong Hao, Quangong Ma, Dan Qu, Dawei Shi, Xukui Yang, Buyu Liu\",\"doi\":\"10.1007/s11128-025-04880-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In quantum mechanics, measurements of a quantum state in various directions yield distinct outcomes, a principle that forms the foundation of quantum communication theory. This paper expands upon this concept by introducing a method to modify generator projection directions (MGPD) within quantum stabilizer codes. Employing the Steane code ((7, 1, 3) code), as a fundamental carrier, we develop a novel scheme for direct quantum steganography across a single-type Pauli channel. The infeasibility of eavesdropping decoding under MGPD is proven. We detail the steganographic encoding and decoding schemes, corresponding quantum circuits, and eavesdropping detection principles. We also use a ‘Sudoku’-style strategy to balance steganographic error probabilities and provide the complete steganography protocol. Relative to existing studies, the MGPD method achieves embedding rates approaching and attaining the upper limit of the information capacity for the <span>\\\\((n,k,d)=(7,1,3)\\\\)</span> code within a noise probability range of approximately <span>\\\\(1/(n+1)=12.5\\\\%\\\\)</span>. It also reduces the consumption of auxiliary keys from <span>\\\\(O(\\\\log {(N)})\\\\)</span> to <i>O</i>(1), while enabling eavesdropping detection and steganography of arbitrary quantum states. We investigate its potential applications in quantum communication and assess its benefits in the context of secret information transmission and eavesdropping detection in noisy channels. Although the MGPD method incorporates certain idealized assumptions and limitations, it provides novel perspectives on the concealment of quantum information.</p></div>\",\"PeriodicalId\":746,\"journal\":{\"name\":\"Quantum Information Processing\",\"volume\":\"24 9\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Information Processing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11128-025-04880-w\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04880-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Quantum direct steganography scheme based on modified generator projection directions of steane code over a single-type Pauli channel
In quantum mechanics, measurements of a quantum state in various directions yield distinct outcomes, a principle that forms the foundation of quantum communication theory. This paper expands upon this concept by introducing a method to modify generator projection directions (MGPD) within quantum stabilizer codes. Employing the Steane code ((7, 1, 3) code), as a fundamental carrier, we develop a novel scheme for direct quantum steganography across a single-type Pauli channel. The infeasibility of eavesdropping decoding under MGPD is proven. We detail the steganographic encoding and decoding schemes, corresponding quantum circuits, and eavesdropping detection principles. We also use a ‘Sudoku’-style strategy to balance steganographic error probabilities and provide the complete steganography protocol. Relative to existing studies, the MGPD method achieves embedding rates approaching and attaining the upper limit of the information capacity for the \((n,k,d)=(7,1,3)\) code within a noise probability range of approximately \(1/(n+1)=12.5\%\). It also reduces the consumption of auxiliary keys from \(O(\log {(N)})\) to O(1), while enabling eavesdropping detection and steganography of arbitrary quantum states. We investigate its potential applications in quantum communication and assess its benefits in the context of secret information transmission and eavesdropping detection in noisy channels. Although the MGPD method incorporates certain idealized assumptions and limitations, it provides novel perspectives on the concealment of quantum information.
期刊介绍:
Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.