一维随机Allen-Cahn方程的界面波动问题

IF 2.4 1区 数学 Q1 MATHEMATICS, APPLIED
Weijun Xu, Wenhao Zhao, Shuhan Zhou
{"title":"一维随机Allen-Cahn方程的界面波动问题","authors":"Weijun Xu,&nbsp;Wenhao Zhao,&nbsp;Shuhan Zhou","doi":"10.1007/s00205-025-02121-z","DOIUrl":null,"url":null,"abstract":"<div><p>We revisit the interface fluctuation problem for the 1D Allen-Cahn equation perturbed by a small space-time white noise. We show that if the initial data is a standing wave solution to the deterministic equation, then under proper long time scale, the solution is still close to the family of traveling wave solutions. Furthermore, the motion of the interface converges to an explicit stochastic differential equation. This extends the classical result in Funaki (Probab Theory Relat Fields 102(2):221–288, 1995) to a full small noise regime, and recovers the result in Brassesco et al. (J Theor Probab 11:25–80, 1998). The proof builds on the analytic framework in Funaki (Probab Theory Relat Fields 102(2):221–288, 1995). Our main novelty is the construction of a series of functional correctors that are designed to recursively cancel potential divergences. Moreover, to show that these correctors are well-behaved, we develop a systematic decomposition of Fréchet derivatives of the deterministic Allen-Cahn flow of all orders. This decomposition is of its own interest, and may be useful in other situations as well.\n</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"249 5","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interface Fluctuations for 1D Stochastic Allen-Cahn Equation Revisited\",\"authors\":\"Weijun Xu,&nbsp;Wenhao Zhao,&nbsp;Shuhan Zhou\",\"doi\":\"10.1007/s00205-025-02121-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We revisit the interface fluctuation problem for the 1D Allen-Cahn equation perturbed by a small space-time white noise. We show that if the initial data is a standing wave solution to the deterministic equation, then under proper long time scale, the solution is still close to the family of traveling wave solutions. Furthermore, the motion of the interface converges to an explicit stochastic differential equation. This extends the classical result in Funaki (Probab Theory Relat Fields 102(2):221–288, 1995) to a full small noise regime, and recovers the result in Brassesco et al. (J Theor Probab 11:25–80, 1998). The proof builds on the analytic framework in Funaki (Probab Theory Relat Fields 102(2):221–288, 1995). Our main novelty is the construction of a series of functional correctors that are designed to recursively cancel potential divergences. Moreover, to show that these correctors are well-behaved, we develop a systematic decomposition of Fréchet derivatives of the deterministic Allen-Cahn flow of all orders. This decomposition is of its own interest, and may be useful in other situations as well.\\n</p></div>\",\"PeriodicalId\":55484,\"journal\":{\"name\":\"Archive for Rational Mechanics and Analysis\",\"volume\":\"249 5\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Rational Mechanics and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-025-02121-z\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-025-02121-z","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们重新研究了一维Allen-Cahn方程在小时空白噪声扰动下的界面涨落问题。我们证明了如果初始数据是确定性方程的驻波解,那么在适当的长时间尺度下,解仍然接近行波解族。此外,界面的运动收敛于一个显式的随机微分方程。这将Funaki (Probab Theory related Fields 102(2):221 - 288,1995)的经典结果扩展到一个完整的小噪声范围,并恢复了Brassesco等人的结果(J Theory Probab 11:25 - 80,1998)。该证明建立在Funaki (Probab Theory relesfields 102(2):221 - 288,1995)的分析框架之上。我们的主要新颖之处在于构建了一系列功能校正器,旨在递归地消除潜在的发散。此外,为了证明这些校正器是性能良好的,我们开发了所有阶的确定性Allen-Cahn流的fr衍生物的系统分解。这种分解本身是有意义的,并且在其他情况下也可能有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interface Fluctuations for 1D Stochastic Allen-Cahn Equation Revisited

We revisit the interface fluctuation problem for the 1D Allen-Cahn equation perturbed by a small space-time white noise. We show that if the initial data is a standing wave solution to the deterministic equation, then under proper long time scale, the solution is still close to the family of traveling wave solutions. Furthermore, the motion of the interface converges to an explicit stochastic differential equation. This extends the classical result in Funaki (Probab Theory Relat Fields 102(2):221–288, 1995) to a full small noise regime, and recovers the result in Brassesco et al. (J Theor Probab 11:25–80, 1998). The proof builds on the analytic framework in Funaki (Probab Theory Relat Fields 102(2):221–288, 1995). Our main novelty is the construction of a series of functional correctors that are designed to recursively cancel potential divergences. Moreover, to show that these correctors are well-behaved, we develop a systematic decomposition of Fréchet derivatives of the deterministic Allen-Cahn flow of all orders. This decomposition is of its own interest, and may be useful in other situations as well.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信