广义相对论中的伯曼-施温格原理:黑洞周围无碰撞物质的线性稳定壳层

IF 2.4 1区 数学 Q1 MATHEMATICS, APPLIED
Sebastian Günther, Gerhard Rein, Christopher Straub
{"title":"广义相对论中的伯曼-施温格原理:黑洞周围无碰撞物质的线性稳定壳层","authors":"Sebastian Günther,&nbsp;Gerhard Rein,&nbsp;Christopher Straub","doi":"10.1007/s00205-025-02123-x","DOIUrl":null,"url":null,"abstract":"<div><p>We develop a Birman–Schwinger principle for the spherically symmetric, asymptotically flat Einstein–Vlasov system. The principle characterizes the stability properties of steady states such as the positive definiteness of an Antonov-type operator or the existence of exponentially growing modes in terms of a one-dimensional variational problem for a Hilbert–Schmidt operator. This requires a refined analysis of the operators arising from linearizing the system, which uses action-angle type variables. For the latter, a single-well structure of the effective potential for the particle flow of the steady state is required. This natural property can be verified for a broad class of singularity-free steady states. As a particular example for the application of our Birman–Schwinger principle we consider steady states where a Schwarzschild black hole is surrounded by a shell of Vlasov matter. We prove the existence of such steady states and derive linear stability if the mass of the Vlasov shell is small compared to the mass of the black hole.\n</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"249 5","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-025-02123-x.pdf","citationCount":"0","resultStr":"{\"title\":\"A Birman–Schwinger Principle in General Relativity: Linearly Stable Shells of Collisionless Matter Surrounding a Black Hole\",\"authors\":\"Sebastian Günther,&nbsp;Gerhard Rein,&nbsp;Christopher Straub\",\"doi\":\"10.1007/s00205-025-02123-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We develop a Birman–Schwinger principle for the spherically symmetric, asymptotically flat Einstein–Vlasov system. The principle characterizes the stability properties of steady states such as the positive definiteness of an Antonov-type operator or the existence of exponentially growing modes in terms of a one-dimensional variational problem for a Hilbert–Schmidt operator. This requires a refined analysis of the operators arising from linearizing the system, which uses action-angle type variables. For the latter, a single-well structure of the effective potential for the particle flow of the steady state is required. This natural property can be verified for a broad class of singularity-free steady states. As a particular example for the application of our Birman–Schwinger principle we consider steady states where a Schwarzschild black hole is surrounded by a shell of Vlasov matter. We prove the existence of such steady states and derive linear stability if the mass of the Vlasov shell is small compared to the mass of the black hole.\\n</p></div>\",\"PeriodicalId\":55484,\"journal\":{\"name\":\"Archive for Rational Mechanics and Analysis\",\"volume\":\"249 5\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00205-025-02123-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Rational Mechanics and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-025-02123-x\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-025-02123-x","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

给出了球对称渐近平坦Einstein-Vlasov系统的Birman-Schwinger原理。该原理描述了稳态的稳定性特性,如antonov型算子的正确定性或Hilbert-Schmidt算子一维变分问题中指数增长模的存在性。这需要对线性化系统产生的操作符进行精细的分析,它使用作用角类型变量。对于后者,需要稳态粒子流有效势的单井结构。这一自然性质可以在一类广泛的无奇点稳态中得到验证。作为应用伯曼-施温格原理的一个特殊例子,我们考虑稳态,其中史瓦西黑洞被弗拉索夫物质壳层包围。我们证明了这种稳定状态的存在性,并推导出了当弗拉索夫壳层的质量比黑洞的质量小时的线性稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Birman–Schwinger Principle in General Relativity: Linearly Stable Shells of Collisionless Matter Surrounding a Black Hole

We develop a Birman–Schwinger principle for the spherically symmetric, asymptotically flat Einstein–Vlasov system. The principle characterizes the stability properties of steady states such as the positive definiteness of an Antonov-type operator or the existence of exponentially growing modes in terms of a one-dimensional variational problem for a Hilbert–Schmidt operator. This requires a refined analysis of the operators arising from linearizing the system, which uses action-angle type variables. For the latter, a single-well structure of the effective potential for the particle flow of the steady state is required. This natural property can be verified for a broad class of singularity-free steady states. As a particular example for the application of our Birman–Schwinger principle we consider steady states where a Schwarzschild black hole is surrounded by a shell of Vlasov matter. We prove the existence of such steady states and derive linear stability if the mass of the Vlasov shell is small compared to the mass of the black hole.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信