矩阵乘积码的欧几里得壳及其在EAQEC码中的应用

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Jie Liu, Peng Hu, Xiusheng Liu
{"title":"矩阵乘积码的欧几里得壳及其在EAQEC码中的应用","authors":"Jie Liu,&nbsp;Peng Hu,&nbsp;Xiusheng Liu","doi":"10.1007/s11128-025-04899-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we exhibit an effective method for constructing entanglement-assisted quantum error-correcting (EAQEC) codes via Euclidean hulls of matrix product codes with <span>\\(t_1\\)</span>-partitioned Euclidean orthogonal property as the defining matrices over the finite fields. By this method, we obtain numerous new EAQEC codes, all of them have higher rate than current EAQEC codes available. Moreover, the dimensions, minimum distances and the number <i>c</i> of pre-shared maximally entangled states of our EAQEC codes are easily calculated and very flexible.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 9","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Euclidean hulls of matrix product codes and their applications to EAQEC codes\",\"authors\":\"Jie Liu,&nbsp;Peng Hu,&nbsp;Xiusheng Liu\",\"doi\":\"10.1007/s11128-025-04899-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we exhibit an effective method for constructing entanglement-assisted quantum error-correcting (EAQEC) codes via Euclidean hulls of matrix product codes with <span>\\\\(t_1\\\\)</span>-partitioned Euclidean orthogonal property as the defining matrices over the finite fields. By this method, we obtain numerous new EAQEC codes, all of them have higher rate than current EAQEC codes available. Moreover, the dimensions, minimum distances and the number <i>c</i> of pre-shared maximally entangled states of our EAQEC codes are easily calculated and very flexible.</p></div>\",\"PeriodicalId\":746,\"journal\":{\"name\":\"Quantum Information Processing\",\"volume\":\"24 9\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Information Processing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11128-025-04899-z\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04899-z","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们展示了一种有效的方法来构造纠缠辅助量子纠错(EAQEC)码,通过矩阵乘积码的欧几里得壳,以\(t_1\) -划分欧几里得正交性质作为有限域上的定义矩阵。通过这种方法,我们获得了许多新的EAQEC代码,这些代码都比现有的EAQEC代码具有更高的识别率。此外,我们的EAQEC码的维数、最小距离和预共享最大纠缠态数c易于计算且非常灵活。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Euclidean hulls of matrix product codes and their applications to EAQEC codes

In this paper, we exhibit an effective method for constructing entanglement-assisted quantum error-correcting (EAQEC) codes via Euclidean hulls of matrix product codes with \(t_1\)-partitioned Euclidean orthogonal property as the defining matrices over the finite fields. By this method, we obtain numerous new EAQEC codes, all of them have higher rate than current EAQEC codes available. Moreover, the dimensions, minimum distances and the number c of pre-shared maximally entangled states of our EAQEC codes are easily calculated and very flexible.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信