一种新的长度可分的量子MDS编码 \(q^w-1\)

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Fu-Yu Gu, Rui Wang, Yi Li, Ming-Qiang Bai
{"title":"一种新的长度可分的量子MDS编码 \\(q^w-1\\)","authors":"Fu-Yu Gu,&nbsp;Rui Wang,&nbsp;Yi Li,&nbsp;Ming-Qiang Bai","doi":"10.1007/s11128-025-04900-9","DOIUrl":null,"url":null,"abstract":"<div><p>A significant number of quantum maximal-distance-separable (MDS) codes have been successfully developed via constacyclic codes through the application of the Hermitian construction method. While existing quantum error-correcting codes (QECCs) often feature lengths that are divisors of <span>\\(q^w-1\\)</span>, with <i>q</i> being a prime power and <i>w</i> representing a positive even number, this work introduces a novel family of quantum MDS codes with lengths dividing <span>\\(q^w-1\\)</span>, where <i>w</i> is instead an odd prime number. These codes have lengths exceeding <span>\\(q + 1\\)</span> and minimum distances larger than <span>\\(\\frac{q}{2}+1\\)</span>. Additionally, two specific quantum MDS codes for <span>\\(w=3\\)</span> are presented.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 9","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A family of new quantum MDS codes with lengths dividing \\\\(q^w-1\\\\)\",\"authors\":\"Fu-Yu Gu,&nbsp;Rui Wang,&nbsp;Yi Li,&nbsp;Ming-Qiang Bai\",\"doi\":\"10.1007/s11128-025-04900-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A significant number of quantum maximal-distance-separable (MDS) codes have been successfully developed via constacyclic codes through the application of the Hermitian construction method. While existing quantum error-correcting codes (QECCs) often feature lengths that are divisors of <span>\\\\(q^w-1\\\\)</span>, with <i>q</i> being a prime power and <i>w</i> representing a positive even number, this work introduces a novel family of quantum MDS codes with lengths dividing <span>\\\\(q^w-1\\\\)</span>, where <i>w</i> is instead an odd prime number. These codes have lengths exceeding <span>\\\\(q + 1\\\\)</span> and minimum distances larger than <span>\\\\(\\\\frac{q}{2}+1\\\\)</span>. Additionally, two specific quantum MDS codes for <span>\\\\(w=3\\\\)</span> are presented.</p></div>\",\"PeriodicalId\":746,\"journal\":{\"name\":\"Quantum Information Processing\",\"volume\":\"24 9\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Information Processing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11128-025-04900-9\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04900-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过应用厄密构造方法,通过恒环码成功地开发了大量量子最大距离可分码。虽然现有的量子纠错码(QECCs)通常以长度为\(q^w-1\)的因数为特征,其中q是素数幂,w表示正偶数,但这项工作引入了一个新的量子MDS码族,其长度除\(q^w-1\),其中w是奇数素数。这些代码的长度超过\(q + 1\),最小距离大于\(\frac{q}{2}+1\)。此外,还给出了\(w=3\)的两个特定量子MDS代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A family of new quantum MDS codes with lengths dividing \(q^w-1\)

A significant number of quantum maximal-distance-separable (MDS) codes have been successfully developed via constacyclic codes through the application of the Hermitian construction method. While existing quantum error-correcting codes (QECCs) often feature lengths that are divisors of \(q^w-1\), with q being a prime power and w representing a positive even number, this work introduces a novel family of quantum MDS codes with lengths dividing \(q^w-1\), where w is instead an odd prime number. These codes have lengths exceeding \(q + 1\) and minimum distances larger than \(\frac{q}{2}+1\). Additionally, two specific quantum MDS codes for \(w=3\) are presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信