超导量子计算机:谁在引领未来?

IF 5.6 2区 物理与天体物理 Q1 OPTICS
Muhammad AbuGhanem
{"title":"超导量子计算机:谁在引领未来?","authors":"Muhammad AbuGhanem","doi":"10.1140/epjqt/s40507-025-00405-7","DOIUrl":null,"url":null,"abstract":"<div><p>Superconducting quantum computing has emerged as a leading platform in the pursuit of practical quantum computers, driven by rapid advances from industry, academia, and government initiatives. This review examines the state of superconducting quantum technology, with emphasis on qubit design, processor architecture, scalability, and supporting quantum software. We compare the hardware strategies and performance milestones of key players—including IBM Quantum, Google Quantum AI, Rigetti Computing, Intel Quantum, QuTech, and Oxford Quantum Circuits—highlighting innovations in qubit coherence, control, and system integration. Landmark demonstrations such as quantum supremacy experiments are discussed alongside progress toward real-world applications in the noisy intermediate-scale quantum (NISQ) era. Beyond hardware, attention is given to the broader software and service ecosystem, including quantum programming frameworks, operating environments, and cloud-accessible platforms such as Amazon Braket, Azure Quantum, and OriginQ Cloud, which enable remote access and algorithm development. Persistent challenges in superconducting quantum computing—such as error correction, system stability, and large-scale integration—are assessed in light of emerging approaches aimed at fault-tolerant quantum computing. As the field moves from the NISQ era toward fault-tolerant quantum computing, we capture the defining hardware achievements and characteristics of current superconducting processors, while examining the ongoing efforts and challenges in overcoming NISQ-era limitations. These developments offer critical insights into the path toward scalable quantum systems and their transformative impact on future technologies, while also underscoring the strategic and societal considerations that require balancing innovation with responsible oversight and thoughtful governance.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00405-7","citationCount":"0","resultStr":"{\"title\":\"Superconducting quantum computers: who is leading the future?\",\"authors\":\"Muhammad AbuGhanem\",\"doi\":\"10.1140/epjqt/s40507-025-00405-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Superconducting quantum computing has emerged as a leading platform in the pursuit of practical quantum computers, driven by rapid advances from industry, academia, and government initiatives. This review examines the state of superconducting quantum technology, with emphasis on qubit design, processor architecture, scalability, and supporting quantum software. We compare the hardware strategies and performance milestones of key players—including IBM Quantum, Google Quantum AI, Rigetti Computing, Intel Quantum, QuTech, and Oxford Quantum Circuits—highlighting innovations in qubit coherence, control, and system integration. Landmark demonstrations such as quantum supremacy experiments are discussed alongside progress toward real-world applications in the noisy intermediate-scale quantum (NISQ) era. Beyond hardware, attention is given to the broader software and service ecosystem, including quantum programming frameworks, operating environments, and cloud-accessible platforms such as Amazon Braket, Azure Quantum, and OriginQ Cloud, which enable remote access and algorithm development. Persistent challenges in superconducting quantum computing—such as error correction, system stability, and large-scale integration—are assessed in light of emerging approaches aimed at fault-tolerant quantum computing. As the field moves from the NISQ era toward fault-tolerant quantum computing, we capture the defining hardware achievements and characteristics of current superconducting processors, while examining the ongoing efforts and challenges in overcoming NISQ-era limitations. These developments offer critical insights into the path toward scalable quantum systems and their transformative impact on future technologies, while also underscoring the strategic and societal considerations that require balancing innovation with responsible oversight and thoughtful governance.</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00405-7\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-025-00405-7\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00405-7","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

在工业、学术界和政府倡议的快速发展的推动下,超导量子计算已经成为追求实用量子计算机的领先平台。本文综述了超导量子技术的现状,重点介绍了量子比特设计、处理器架构、可扩展性和支持量子软件。我们比较了主要参与者的硬件策略和性能里程碑-包括IBM量子,谷歌量子人工智能,Rigetti计算,英特尔量子,QuTech和牛津量子电路-突出了量子比特相干性,控制和系统集成方面的创新。具有里程碑意义的演示,如量子霸权实验,以及在嘈杂的中等规模量子(NISQ)时代的实际应用进展进行了讨论。除了硬件之外,还将关注更广泛的软件和服务生态系统,包括量子编程框架、操作环境和云访问平台,如Amazon Braket、Azure quantum和OriginQ Cloud,这些平台可以实现远程访问和算法开发。超导量子计算中持续存在的挑战——如纠错、系统稳定性和大规模集成——根据旨在容错量子计算的新兴方法进行了评估。随着该领域从NISQ时代转向容错量子计算,我们捕捉到当前超导处理器的定义硬件成就和特征,同时研究克服NISQ时代限制的持续努力和挑战。这些发展为通往可扩展量子系统的道路及其对未来技术的变革性影响提供了重要见解,同时也强调了需要平衡创新与负责任的监督和深思熟虑的治理的战略和社会考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Superconducting quantum computers: who is leading the future?

Superconducting quantum computing has emerged as a leading platform in the pursuit of practical quantum computers, driven by rapid advances from industry, academia, and government initiatives. This review examines the state of superconducting quantum technology, with emphasis on qubit design, processor architecture, scalability, and supporting quantum software. We compare the hardware strategies and performance milestones of key players—including IBM Quantum, Google Quantum AI, Rigetti Computing, Intel Quantum, QuTech, and Oxford Quantum Circuits—highlighting innovations in qubit coherence, control, and system integration. Landmark demonstrations such as quantum supremacy experiments are discussed alongside progress toward real-world applications in the noisy intermediate-scale quantum (NISQ) era. Beyond hardware, attention is given to the broader software and service ecosystem, including quantum programming frameworks, operating environments, and cloud-accessible platforms such as Amazon Braket, Azure Quantum, and OriginQ Cloud, which enable remote access and algorithm development. Persistent challenges in superconducting quantum computing—such as error correction, system stability, and large-scale integration—are assessed in light of emerging approaches aimed at fault-tolerant quantum computing. As the field moves from the NISQ era toward fault-tolerant quantum computing, we capture the defining hardware achievements and characteristics of current superconducting processors, while examining the ongoing efforts and challenges in overcoming NISQ-era limitations. These developments offer critical insights into the path toward scalable quantum systems and their transformative impact on future technologies, while also underscoring the strategic and societal considerations that require balancing innovation with responsible oversight and thoughtful governance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信