{"title":"反应5:一个预先训练的变压器模型,在有限的数据下进行准确的化学反应预测","authors":"Tatsuya Sagawa, Ryosuke Kojima","doi":"10.1186/s13321-025-01075-4","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate chemical reaction prediction is critical for reducing both cost and time in drug development. This study introduces ReactionT5, a transformer-based chemical reaction foundation model pre-trained on the Open Reaction Database—a large publicly available reaction dataset. In benchmarks for product prediction, retrosynthesis, and yield prediction, ReactionT5 outperformed existing models. Specifically, ReactionT5 achieved 97.5% accuracy in product prediction, 71.0% in retrosynthesis, and a coefficient of determination of 0.947 in yield prediction. Remarkably, ReactionT5, when fine-tuned with only a limited dataset of reactions, achieved performance on par with models fine-tuned on the complete dataset. Additionally, the visualization of ReactionT5 embeddings illustrates that the model successfully captures and represents the chemical reaction space, indicating effective learning of reaction properties.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01075-4","citationCount":"0","resultStr":"{\"title\":\"ReactionT5: a pre-trained transformer model for accurate chemical reaction prediction with limited data\",\"authors\":\"Tatsuya Sagawa, Ryosuke Kojima\",\"doi\":\"10.1186/s13321-025-01075-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurate chemical reaction prediction is critical for reducing both cost and time in drug development. This study introduces ReactionT5, a transformer-based chemical reaction foundation model pre-trained on the Open Reaction Database—a large publicly available reaction dataset. In benchmarks for product prediction, retrosynthesis, and yield prediction, ReactionT5 outperformed existing models. Specifically, ReactionT5 achieved 97.5% accuracy in product prediction, 71.0% in retrosynthesis, and a coefficient of determination of 0.947 in yield prediction. Remarkably, ReactionT5, when fine-tuned with only a limited dataset of reactions, achieved performance on par with models fine-tuned on the complete dataset. Additionally, the visualization of ReactionT5 embeddings illustrates that the model successfully captures and represents the chemical reaction space, indicating effective learning of reaction properties.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01075-4\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-025-01075-4\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-01075-4","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
ReactionT5: a pre-trained transformer model for accurate chemical reaction prediction with limited data
Accurate chemical reaction prediction is critical for reducing both cost and time in drug development. This study introduces ReactionT5, a transformer-based chemical reaction foundation model pre-trained on the Open Reaction Database—a large publicly available reaction dataset. In benchmarks for product prediction, retrosynthesis, and yield prediction, ReactionT5 outperformed existing models. Specifically, ReactionT5 achieved 97.5% accuracy in product prediction, 71.0% in retrosynthesis, and a coefficient of determination of 0.947 in yield prediction. Remarkably, ReactionT5, when fine-tuned with only a limited dataset of reactions, achieved performance on par with models fine-tuned on the complete dataset. Additionally, the visualization of ReactionT5 embeddings illustrates that the model successfully captures and represents the chemical reaction space, indicating effective learning of reaction properties.
期刊介绍:
Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling.
Coverage includes, but is not limited to:
chemical information systems, software and databases, and molecular modelling,
chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases,
computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.