反应5:一个预先训练的变压器模型,在有限的数据下进行准确的化学反应预测

IF 5.7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tatsuya Sagawa, Ryosuke Kojima
{"title":"反应5:一个预先训练的变压器模型,在有限的数据下进行准确的化学反应预测","authors":"Tatsuya Sagawa,&nbsp;Ryosuke Kojima","doi":"10.1186/s13321-025-01075-4","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate chemical reaction prediction is critical for reducing both cost and time in drug development. This study introduces ReactionT5, a transformer-based chemical reaction foundation model pre-trained on the Open Reaction Database—a large publicly available reaction dataset. In benchmarks for product prediction, retrosynthesis, and yield prediction, ReactionT5 outperformed existing models. Specifically, ReactionT5 achieved 97.5% accuracy in product prediction, 71.0% in retrosynthesis, and a coefficient of determination of 0.947 in yield prediction. Remarkably, ReactionT5, when fine-tuned with only a limited dataset of reactions, achieved performance on par with models fine-tuned on the complete dataset. Additionally, the visualization of ReactionT5 embeddings illustrates that the model successfully captures and represents the chemical reaction space, indicating effective learning of reaction properties.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01075-4","citationCount":"0","resultStr":"{\"title\":\"ReactionT5: a pre-trained transformer model for accurate chemical reaction prediction with limited data\",\"authors\":\"Tatsuya Sagawa,&nbsp;Ryosuke Kojima\",\"doi\":\"10.1186/s13321-025-01075-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurate chemical reaction prediction is critical for reducing both cost and time in drug development. This study introduces ReactionT5, a transformer-based chemical reaction foundation model pre-trained on the Open Reaction Database—a large publicly available reaction dataset. In benchmarks for product prediction, retrosynthesis, and yield prediction, ReactionT5 outperformed existing models. Specifically, ReactionT5 achieved 97.5% accuracy in product prediction, 71.0% in retrosynthesis, and a coefficient of determination of 0.947 in yield prediction. Remarkably, ReactionT5, when fine-tuned with only a limited dataset of reactions, achieved performance on par with models fine-tuned on the complete dataset. Additionally, the visualization of ReactionT5 embeddings illustrates that the model successfully captures and represents the chemical reaction space, indicating effective learning of reaction properties.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01075-4\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-025-01075-4\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-01075-4","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

准确的化学反应预测对于降低药物开发的成本和时间至关重要。本研究介绍了基于变压器的化学反应基础模型reaction t5,该模型是在Open reaction database(一个大型公开可用的反应数据集)上预先训练的。在产品预测、反合成和产率预测的基准测试中,ReactionT5优于现有模型。其中,ReactionT5的产物预测准确率为97.5%,反合成准确率为71.0%,产率预测的决定系数为0.947。值得注意的是,当仅对有限的反应数据集进行微调时,反动5达到了与在完整数据集上微调的模型相当的性能。此外,reaction t5嵌入的可视化表明,该模型成功捕获并表示了化学反应空间,表明对反应性质的有效学习。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ReactionT5: a pre-trained transformer model for accurate chemical reaction prediction with limited data

Accurate chemical reaction prediction is critical for reducing both cost and time in drug development. This study introduces ReactionT5, a transformer-based chemical reaction foundation model pre-trained on the Open Reaction Database—a large publicly available reaction dataset. In benchmarks for product prediction, retrosynthesis, and yield prediction, ReactionT5 outperformed existing models. Specifically, ReactionT5 achieved 97.5% accuracy in product prediction, 71.0% in retrosynthesis, and a coefficient of determination of 0.947 in yield prediction. Remarkably, ReactionT5, when fine-tuned with only a limited dataset of reactions, achieved performance on par with models fine-tuned on the complete dataset. Additionally, the visualization of ReactionT5 embeddings illustrates that the model successfully captures and represents the chemical reaction space, indicating effective learning of reaction properties.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信