PHM的大型语言模型:优化技术和应用综述

Tingyi Yu, Junya Tang, Qingyun Yu, Li Li, Ying Liu, Raul Poler
{"title":"PHM的大型语言模型:优化技术和应用综述","authors":"Tingyi Yu,&nbsp;Junya Tang,&nbsp;Qingyun Yu,&nbsp;Li Li,&nbsp;Ying Liu,&nbsp;Raul Poler","doi":"10.1007/s43684-025-00100-5","DOIUrl":null,"url":null,"abstract":"<div><p>The rapid advancement of Large Language Models (LLMs) has created unprecedented opportunities for industrial automation, process optimization, and decision support systems. As industries seek to leverage LLMs for industrial tasks, understanding their architecture, deployment strategies, and fine-tuning methods becomes critical. In this review, we aim to summarize the challenges, key technologies, current status, and future directions of LLM in Prognostics and Health Management(PHM). First, this review introduces deep learning for PHM. We begin by analyzing the architectural considerations and deployment strategies for industrial environments, including acceleration techniques and quantization methods that enable efficient operation on resource-constrained industrial hardware. Second, we investigate Parameter Efficient Fine-Tuning (PEFT) techniques that allow industry-specific adaptation without prohibitive computational costs. Multi-modal capabilities extending LLMs beyond text to process sensor data, images, and time-series information are also discussed. Finally, we explore emerging PHM including anomaly detection systems that identify equipment malfunctions, fault diagnosis frameworks that determine root causes, and specialized question-answering systems that empower workers with instant domain expertise. We conclude by identifying key challenges and future research directions for LLM deployment in PHM. This review provides a timely resource for researchers, engineers, and decision-makers navigating the transformative potential of language models in industry 4.0 environments.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-025-00100-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Large language models for PHM: a review of optimization techniques and applications\",\"authors\":\"Tingyi Yu,&nbsp;Junya Tang,&nbsp;Qingyun Yu,&nbsp;Li Li,&nbsp;Ying Liu,&nbsp;Raul Poler\",\"doi\":\"10.1007/s43684-025-00100-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The rapid advancement of Large Language Models (LLMs) has created unprecedented opportunities for industrial automation, process optimization, and decision support systems. As industries seek to leverage LLMs for industrial tasks, understanding their architecture, deployment strategies, and fine-tuning methods becomes critical. In this review, we aim to summarize the challenges, key technologies, current status, and future directions of LLM in Prognostics and Health Management(PHM). First, this review introduces deep learning for PHM. We begin by analyzing the architectural considerations and deployment strategies for industrial environments, including acceleration techniques and quantization methods that enable efficient operation on resource-constrained industrial hardware. Second, we investigate Parameter Efficient Fine-Tuning (PEFT) techniques that allow industry-specific adaptation without prohibitive computational costs. Multi-modal capabilities extending LLMs beyond text to process sensor data, images, and time-series information are also discussed. Finally, we explore emerging PHM including anomaly detection systems that identify equipment malfunctions, fault diagnosis frameworks that determine root causes, and specialized question-answering systems that empower workers with instant domain expertise. We conclude by identifying key challenges and future research directions for LLM deployment in PHM. This review provides a timely resource for researchers, engineers, and decision-makers navigating the transformative potential of language models in industry 4.0 environments.</p></div>\",\"PeriodicalId\":71187,\"journal\":{\"name\":\"自主智能系统(英文)\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43684-025-00100-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"自主智能系统(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43684-025-00100-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"自主智能系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://link.springer.com/article/10.1007/s43684-025-00100-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型(llm)的快速发展为工业自动化、流程优化和决策支持系统创造了前所未有的机会。随着行业寻求利用llm来完成工业任务,了解llm的体系结构、部署策略和微调方法变得至关重要。本文综述了预后与健康管理(PHM)法学硕士面临的挑战、关键技术、现状和未来发展方向。首先,本文介绍了PHM的深度学习。我们首先分析工业环境的体系结构考虑因素和部署策略,包括加速技术和量化方法,它们可以在资源受限的工业硬件上实现高效操作。其次,我们研究了参数高效微调(PEFT)技术,该技术允许行业特定的适应,而不需要高昂的计算成本。还讨论了将llm扩展到文本之外的多模式功能,以处理传感器数据、图像和时间序列信息。最后,我们探讨了新兴的PHM,包括识别设备故障的异常检测系统,确定根本原因的故障诊断框架,以及赋予工人即时领域专业知识的专业问答系统。最后,我们确定了LLM在PHM中部署的主要挑战和未来的研究方向。这篇综述为研究人员、工程师和决策者在工业4.0环境中导航语言模型的变革潜力提供了及时的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large language models for PHM: a review of optimization techniques and applications

The rapid advancement of Large Language Models (LLMs) has created unprecedented opportunities for industrial automation, process optimization, and decision support systems. As industries seek to leverage LLMs for industrial tasks, understanding their architecture, deployment strategies, and fine-tuning methods becomes critical. In this review, we aim to summarize the challenges, key technologies, current status, and future directions of LLM in Prognostics and Health Management(PHM). First, this review introduces deep learning for PHM. We begin by analyzing the architectural considerations and deployment strategies for industrial environments, including acceleration techniques and quantization methods that enable efficient operation on resource-constrained industrial hardware. Second, we investigate Parameter Efficient Fine-Tuning (PEFT) techniques that allow industry-specific adaptation without prohibitive computational costs. Multi-modal capabilities extending LLMs beyond text to process sensor data, images, and time-series information are also discussed. Finally, we explore emerging PHM including anomaly detection systems that identify equipment malfunctions, fault diagnosis frameworks that determine root causes, and specialized question-answering systems that empower workers with instant domain expertise. We conclude by identifying key challenges and future research directions for LLM deployment in PHM. This review provides a timely resource for researchers, engineers, and decision-makers navigating the transformative potential of language models in industry 4.0 environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信