一种基于深度学习的无小区大规模MIMO系统信道估计方案

IF 0.8 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Malcolm Sande;Giscard Binini
{"title":"一种基于深度学习的无小区大规模MIMO系统信道估计方案","authors":"Malcolm Sande;Giscard Binini","doi":"10.23919/SAIEE.2025.11129185","DOIUrl":null,"url":null,"abstract":"Cell-free massive multiple-input-multiple-output (MIMO) is a technique that couples the cell-free network architecture and massive antenna arrays. In cell-free massive MIMO, multiple access points (APs) are collocated to serve fewer user equipment (UEs), which results in a system with more APs than UEs. To achieve optimum transmission performance, massive MIMO requires knowledge of accurate channel state information (CSI). However, the conventional method of CSI estimation, based on minimum mean square error, suffers from high computational complexity, pilot contamination, and noise interference, which degrade the performance of the system. In this paper, we propose a deep learning-based channel estimation approach that makes use of a deep neural network to provide a scalable and efficient channel estimation scheme. Simulation results showed that the proposed scheme consistently outperformed conventional cell-free massive MIMO, small cell network, and cellular massive MIMO architectures.","PeriodicalId":42493,"journal":{"name":"SAIEE Africa Research Journal","volume":"116 4","pages":"160-168"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11129185","citationCount":"0","resultStr":"{\"title\":\"A deep learning-based channel estimation scheme for cell-free massive MIMO systems\",\"authors\":\"Malcolm Sande;Giscard Binini\",\"doi\":\"10.23919/SAIEE.2025.11129185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cell-free massive multiple-input-multiple-output (MIMO) is a technique that couples the cell-free network architecture and massive antenna arrays. In cell-free massive MIMO, multiple access points (APs) are collocated to serve fewer user equipment (UEs), which results in a system with more APs than UEs. To achieve optimum transmission performance, massive MIMO requires knowledge of accurate channel state information (CSI). However, the conventional method of CSI estimation, based on minimum mean square error, suffers from high computational complexity, pilot contamination, and noise interference, which degrade the performance of the system. In this paper, we propose a deep learning-based channel estimation approach that makes use of a deep neural network to provide a scalable and efficient channel estimation scheme. Simulation results showed that the proposed scheme consistently outperformed conventional cell-free massive MIMO, small cell network, and cellular massive MIMO architectures.\",\"PeriodicalId\":42493,\"journal\":{\"name\":\"SAIEE Africa Research Journal\",\"volume\":\"116 4\",\"pages\":\"160-168\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11129185\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAIEE Africa Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11129185/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAIEE Africa Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11129185/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

无小区大规模多输入多输出(MIMO)是一种将无小区网络结构与大规模天线阵列相结合的技术。在无小区大规模MIMO中,多个接入点(ap)被配置以服务较少的用户设备(ue),从而导致ap多于ue的系统。为了获得最佳的传输性能,大规模MIMO需要了解准确的信道状态信息(CSI)。然而,传统的基于最小均方误差的CSI估计方法存在计算复杂度高、导频污染和噪声干扰等问题,降低了系统的性能。在本文中,我们提出了一种基于深度学习的信道估计方法,该方法利用深度神经网络提供可扩展且高效的信道估计方案。仿真结果表明,该方案持续优于传统的无蜂窝大规模MIMO、小蜂窝网络和蜂窝大规模MIMO架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A deep learning-based channel estimation scheme for cell-free massive MIMO systems
Cell-free massive multiple-input-multiple-output (MIMO) is a technique that couples the cell-free network architecture and massive antenna arrays. In cell-free massive MIMO, multiple access points (APs) are collocated to serve fewer user equipment (UEs), which results in a system with more APs than UEs. To achieve optimum transmission performance, massive MIMO requires knowledge of accurate channel state information (CSI). However, the conventional method of CSI estimation, based on minimum mean square error, suffers from high computational complexity, pilot contamination, and noise interference, which degrade the performance of the system. In this paper, we propose a deep learning-based channel estimation approach that makes use of a deep neural network to provide a scalable and efficient channel estimation scheme. Simulation results showed that the proposed scheme consistently outperformed conventional cell-free massive MIMO, small cell network, and cellular massive MIMO architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SAIEE Africa Research Journal
SAIEE Africa Research Journal ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
0.00%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信