Yi Huang;Jisong Zeng;Yanting Wei;Miaojiang Chen;Wenjing Xiao;Yang Yang;Zhiquan Liu;Ahmed Farouk;Houbing Herbert Song
{"title":"低碳农业消费电子设备任务卸载与资源配置的自关注策略优化","authors":"Yi Huang;Jisong Zeng;Yanting Wei;Miaojiang Chen;Wenjing Xiao;Yang Yang;Zhiquan Liu;Ahmed Farouk;Houbing Herbert Song","doi":"10.1109/TCE.2025.3563421","DOIUrl":null,"url":null,"abstract":"In recent years, the widespread use of edge agricultural consumer electronics has greatly contributed to the level of intelligence in agricultural production, bringing higher efficiency and quality. However, offloading all tasks to the cloud incurs significant latency and resource waste, while relying solely on edge computing fails to meet the computational demands of the entire system. To solve the above problems, we introduce the device-edge-cloud (DEC) three-layer architecture, where agri-consumer electronics devices can partially offload tasks to the edge, and the edge can partially offload tasks to the cloud, i.e., agri-consumer electronics can realize device-edge-cloud collaborative computation. Second, we model the joint computation offloading and resource allocation optimization problem as a non-convex optimization and propose a novel Self-Attention Policy Optimization (SAPO) algorithm to solve it. Experiments show that the joint optimization performance of the proposed SAPO exceeds the baseline, and it is suitable for many different models. Compared with fully connected networks, it has better convergence and robustness, with a convergence speed 50% faster than the fully connected networks. The proposed SAPO algorithm has good scalability and adaptability, and has the potential to be extended to smart agricultural computing scenarios with non-convex optimization.","PeriodicalId":13208,"journal":{"name":"IEEE Transactions on Consumer Electronics","volume":"71 2","pages":"6969-6980"},"PeriodicalIF":10.9000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Attention Policy Optimization for Task Offloading and Resource Allocation in Low-Carbon Agricultural Consumer Electronic Devices\",\"authors\":\"Yi Huang;Jisong Zeng;Yanting Wei;Miaojiang Chen;Wenjing Xiao;Yang Yang;Zhiquan Liu;Ahmed Farouk;Houbing Herbert Song\",\"doi\":\"10.1109/TCE.2025.3563421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, the widespread use of edge agricultural consumer electronics has greatly contributed to the level of intelligence in agricultural production, bringing higher efficiency and quality. However, offloading all tasks to the cloud incurs significant latency and resource waste, while relying solely on edge computing fails to meet the computational demands of the entire system. To solve the above problems, we introduce the device-edge-cloud (DEC) three-layer architecture, where agri-consumer electronics devices can partially offload tasks to the edge, and the edge can partially offload tasks to the cloud, i.e., agri-consumer electronics can realize device-edge-cloud collaborative computation. Second, we model the joint computation offloading and resource allocation optimization problem as a non-convex optimization and propose a novel Self-Attention Policy Optimization (SAPO) algorithm to solve it. Experiments show that the joint optimization performance of the proposed SAPO exceeds the baseline, and it is suitable for many different models. Compared with fully connected networks, it has better convergence and robustness, with a convergence speed 50% faster than the fully connected networks. The proposed SAPO algorithm has good scalability and adaptability, and has the potential to be extended to smart agricultural computing scenarios with non-convex optimization.\",\"PeriodicalId\":13208,\"journal\":{\"name\":\"IEEE Transactions on Consumer Electronics\",\"volume\":\"71 2\",\"pages\":\"6969-6980\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Consumer Electronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10975106/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Consumer Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10975106/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Self-Attention Policy Optimization for Task Offloading and Resource Allocation in Low-Carbon Agricultural Consumer Electronic Devices
In recent years, the widespread use of edge agricultural consumer electronics has greatly contributed to the level of intelligence in agricultural production, bringing higher efficiency and quality. However, offloading all tasks to the cloud incurs significant latency and resource waste, while relying solely on edge computing fails to meet the computational demands of the entire system. To solve the above problems, we introduce the device-edge-cloud (DEC) three-layer architecture, where agri-consumer electronics devices can partially offload tasks to the edge, and the edge can partially offload tasks to the cloud, i.e., agri-consumer electronics can realize device-edge-cloud collaborative computation. Second, we model the joint computation offloading and resource allocation optimization problem as a non-convex optimization and propose a novel Self-Attention Policy Optimization (SAPO) algorithm to solve it. Experiments show that the joint optimization performance of the proposed SAPO exceeds the baseline, and it is suitable for many different models. Compared with fully connected networks, it has better convergence and robustness, with a convergence speed 50% faster than the fully connected networks. The proposed SAPO algorithm has good scalability and adaptability, and has the potential to be extended to smart agricultural computing scenarios with non-convex optimization.
期刊介绍:
The main focus for the IEEE Transactions on Consumer Electronics is the engineering and research aspects of the theory, design, construction, manufacture or end use of mass market electronics, systems, software and services for consumers.