基于尺度敏感Wasserstein距离的SAR舰船检测自适应样本分配

IF 4.4
Shibo Chang;Xiongjun Fu;Jian Dong;Weidong Hu;Weihua Yu
{"title":"基于尺度敏感Wasserstein距离的SAR舰船检测自适应样本分配","authors":"Shibo Chang;Xiongjun Fu;Jian Dong;Weidong Hu;Weihua Yu","doi":"10.1109/LGRS.2025.3597146","DOIUrl":null,"url":null,"abstract":"Deep learning (DL) based synthetic aperture radar (SAR) imagery ship detection is challenged by multiscale ships on the identical SAR image, which inevitably leads to insufficient and low-quality positive samples during training and ultimately degrades detection performance. To address this issue, we propose a Scale-Sensitive Adaptive Sample Allocation Strategy (SSA-SAS) for SAR ship detection. SSA-SAS ranks candidate boxes using a unified score that integrates a scale-sensitive Wasserstein distance (SSWD), a shape cost, and classification confidence. SSWD serves as the core regression metric, enabling adaptive tolerance to positional offsets based on object scale. Meanwhile, the shape cost introduces morphological priors to guide early-stage optimization. These components jointly enhance the quantity and quality of selected positive samples throughout training. Experimental results show that SSA-SAS improves average precision (AP) by up to 2.6% on the high-resolution SAR images dataset for ship detection and instance segmentation (HRSID) dataset and 1.4% on the SAR ship detection dataset (SSDD), while accelerating network convergence by approximately 5.0%.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Sample Allocation for SAR Ship Detection Based on Scale-Sensitive Wasserstein Distance\",\"authors\":\"Shibo Chang;Xiongjun Fu;Jian Dong;Weidong Hu;Weihua Yu\",\"doi\":\"10.1109/LGRS.2025.3597146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning (DL) based synthetic aperture radar (SAR) imagery ship detection is challenged by multiscale ships on the identical SAR image, which inevitably leads to insufficient and low-quality positive samples during training and ultimately degrades detection performance. To address this issue, we propose a Scale-Sensitive Adaptive Sample Allocation Strategy (SSA-SAS) for SAR ship detection. SSA-SAS ranks candidate boxes using a unified score that integrates a scale-sensitive Wasserstein distance (SSWD), a shape cost, and classification confidence. SSWD serves as the core regression metric, enabling adaptive tolerance to positional offsets based on object scale. Meanwhile, the shape cost introduces morphological priors to guide early-stage optimization. These components jointly enhance the quantity and quality of selected positive samples throughout training. Experimental results show that SSA-SAS improves average precision (AP) by up to 2.6% on the high-resolution SAR images dataset for ship detection and instance segmentation (HRSID) dataset and 1.4% on the SAR ship detection dataset (SSDD), while accelerating network convergence by approximately 5.0%.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11121308/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11121308/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于深度学习的合成孔径雷达(SAR)图像船舶检测面临着同一SAR图像上多尺度船舶的挑战,在训练过程中不可避免地导致阳性样本不足和质量低下,最终导致检测性能下降。为了解决这一问题,我们提出了一种尺度敏感自适应样本分配策略(SSA-SAS)。SSA-SAS使用统一的分数对候选框进行排名,该分数集成了尺度敏感的沃瑟斯坦距离(SSWD)、形状成本和分类置信度。SSWD作为核心回归度量,支持基于对象尺度的位置偏移自适应容忍。同时,形状成本引入形态先验来指导早期优化。在整个训练过程中,这些成分共同提高了所选正样本的数量和质量。实验结果表明,SSA-SAS在舰船检测和实例分割(HRSID)高分辨率SAR图像数据集上的平均精度(AP)提高2.6%,在舰船检测(SSDD)高分辨率SAR图像数据集上的平均精度(AP)提高1.4%,同时使网络收敛速度提高约5.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Sample Allocation for SAR Ship Detection Based on Scale-Sensitive Wasserstein Distance
Deep learning (DL) based synthetic aperture radar (SAR) imagery ship detection is challenged by multiscale ships on the identical SAR image, which inevitably leads to insufficient and low-quality positive samples during training and ultimately degrades detection performance. To address this issue, we propose a Scale-Sensitive Adaptive Sample Allocation Strategy (SSA-SAS) for SAR ship detection. SSA-SAS ranks candidate boxes using a unified score that integrates a scale-sensitive Wasserstein distance (SSWD), a shape cost, and classification confidence. SSWD serves as the core regression metric, enabling adaptive tolerance to positional offsets based on object scale. Meanwhile, the shape cost introduces morphological priors to guide early-stage optimization. These components jointly enhance the quantity and quality of selected positive samples throughout training. Experimental results show that SSA-SAS improves average precision (AP) by up to 2.6% on the high-resolution SAR images dataset for ship detection and instance segmentation (HRSID) dataset and 1.4% on the SAR ship detection dataset (SSDD), while accelerating network convergence by approximately 5.0%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信