Saeed Iqbal;Xiaopin Zhong;Muhammad Attique Khan;Mohammad Shabaz;Zongze Wu;Dina Abdulaziz AlHammadi;Weixiang Liu;Shabbab Ali Algamdi;Yang Li
{"title":"通过对多模态数据的张紧关注和持续学习来转换医疗诊断","authors":"Saeed Iqbal;Xiaopin Zhong;Muhammad Attique Khan;Mohammad Shabaz;Zongze Wu;Dina Abdulaziz AlHammadi;Weixiang Liu;Shabbab Ali Algamdi;Yang Li","doi":"10.1109/TCE.2025.3563986","DOIUrl":null,"url":null,"abstract":"Analyzing multi-modal medical data in the setting of uncertain healthcare situations continues to be a major topic in medical image analysis and healthcare big data. Traditional machine learning algorithms are severely hampered by inaccurate data fusion, a lack of adaptability to changing patient data, and challenges managing uncertainty. These difficulties are made worse by complicated medical images and diverse data sources, which results in less accurate diagnosis and worse-than-ideal healthcare choices. To tackle these urgent problems, this paper suggests two new approaches: Continual Learning using Progressive Neural Networks (PNNs) and Tensorized Attention Mechanism for Data Fusion. The Tensorized Attention Mechanism improves multi-modal data fusion by using dynamic, task-specific attention to improve feature alignment across modalities, and the PNNs framework uses continual learning, memory augmentation, and domain adaptation to ensure robust learning under data uncertainty. We test these methods on a variety of multi-modal datasets, such as MIMIC-IV, CheXpert, MOST, OAI, and Heart Murmur, which offer a comprehensive representation of medical data from clinical reports, chest X-rays, heart murmurs, and other heterogeneous data sources. Our experimental results show notable improvements in diagnostic performance, with notable results like a CFI of 0.10, a KR score of 90.4%, and an MMC score of 0.097, indicating superior generalization and robustness across domains. Healthcare AI applications could be revolutionized by the use of specialized losses, such as Conditional Variational Autoencoder (CVAE), Adversarial Contrastive Learning (ACL), Reciprocal Regularization, and domain adaptation losses, which are essential for preventing forgetting and guaranteeing learning stability across shifting data streams.","PeriodicalId":13208,"journal":{"name":"IEEE Transactions on Consumer Electronics","volume":"71 2","pages":"3391-3412"},"PeriodicalIF":10.9000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transforming Healthcare Diagnostics With Tensorized Attention and Continual Learning on Multi-Modal Data\",\"authors\":\"Saeed Iqbal;Xiaopin Zhong;Muhammad Attique Khan;Mohammad Shabaz;Zongze Wu;Dina Abdulaziz AlHammadi;Weixiang Liu;Shabbab Ali Algamdi;Yang Li\",\"doi\":\"10.1109/TCE.2025.3563986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analyzing multi-modal medical data in the setting of uncertain healthcare situations continues to be a major topic in medical image analysis and healthcare big data. Traditional machine learning algorithms are severely hampered by inaccurate data fusion, a lack of adaptability to changing patient data, and challenges managing uncertainty. These difficulties are made worse by complicated medical images and diverse data sources, which results in less accurate diagnosis and worse-than-ideal healthcare choices. To tackle these urgent problems, this paper suggests two new approaches: Continual Learning using Progressive Neural Networks (PNNs) and Tensorized Attention Mechanism for Data Fusion. The Tensorized Attention Mechanism improves multi-modal data fusion by using dynamic, task-specific attention to improve feature alignment across modalities, and the PNNs framework uses continual learning, memory augmentation, and domain adaptation to ensure robust learning under data uncertainty. We test these methods on a variety of multi-modal datasets, such as MIMIC-IV, CheXpert, MOST, OAI, and Heart Murmur, which offer a comprehensive representation of medical data from clinical reports, chest X-rays, heart murmurs, and other heterogeneous data sources. Our experimental results show notable improvements in diagnostic performance, with notable results like a CFI of 0.10, a KR score of 90.4%, and an MMC score of 0.097, indicating superior generalization and robustness across domains. Healthcare AI applications could be revolutionized by the use of specialized losses, such as Conditional Variational Autoencoder (CVAE), Adversarial Contrastive Learning (ACL), Reciprocal Regularization, and domain adaptation losses, which are essential for preventing forgetting and guaranteeing learning stability across shifting data streams.\",\"PeriodicalId\":13208,\"journal\":{\"name\":\"IEEE Transactions on Consumer Electronics\",\"volume\":\"71 2\",\"pages\":\"3391-3412\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Consumer Electronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10975840/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Consumer Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10975840/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Transforming Healthcare Diagnostics With Tensorized Attention and Continual Learning on Multi-Modal Data
Analyzing multi-modal medical data in the setting of uncertain healthcare situations continues to be a major topic in medical image analysis and healthcare big data. Traditional machine learning algorithms are severely hampered by inaccurate data fusion, a lack of adaptability to changing patient data, and challenges managing uncertainty. These difficulties are made worse by complicated medical images and diverse data sources, which results in less accurate diagnosis and worse-than-ideal healthcare choices. To tackle these urgent problems, this paper suggests two new approaches: Continual Learning using Progressive Neural Networks (PNNs) and Tensorized Attention Mechanism for Data Fusion. The Tensorized Attention Mechanism improves multi-modal data fusion by using dynamic, task-specific attention to improve feature alignment across modalities, and the PNNs framework uses continual learning, memory augmentation, and domain adaptation to ensure robust learning under data uncertainty. We test these methods on a variety of multi-modal datasets, such as MIMIC-IV, CheXpert, MOST, OAI, and Heart Murmur, which offer a comprehensive representation of medical data from clinical reports, chest X-rays, heart murmurs, and other heterogeneous data sources. Our experimental results show notable improvements in diagnostic performance, with notable results like a CFI of 0.10, a KR score of 90.4%, and an MMC score of 0.097, indicating superior generalization and robustness across domains. Healthcare AI applications could be revolutionized by the use of specialized losses, such as Conditional Variational Autoencoder (CVAE), Adversarial Contrastive Learning (ACL), Reciprocal Regularization, and domain adaptation losses, which are essential for preventing forgetting and guaranteeing learning stability across shifting data streams.
期刊介绍:
The main focus for the IEEE Transactions on Consumer Electronics is the engineering and research aspects of the theory, design, construction, manufacture or end use of mass market electronics, systems, software and services for consumers.