基于可重构智能曲面的VEC消费电子全息对等体计算卸载

IF 10.9 2区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Miaojiang Chen;Huali Xie;Xiaotian Wang;Wenjing Xiao;Ahmed Farouk;Zhiquan Liu;Min Chen;Houbing Herbert Song
{"title":"基于可重构智能曲面的VEC消费电子全息对等体计算卸载","authors":"Miaojiang Chen;Huali Xie;Xiaotian Wang;Wenjing Xiao;Ahmed Farouk;Zhiquan Liu;Min Chen;Houbing Herbert Song","doi":"10.1109/TCE.2025.3576141","DOIUrl":null,"url":null,"abstract":"In vehicular edge computing (VEC) Consumer Electronics networks, the integration of holographic counterpart technology presents significant challenges due to its stringent requirements for high data transmission rates and communication reliability. Traditional task offloading methods, constrained by suboptimal communication link quality and energy limitations, are inadequate to meet these demands. This paper introduces a groundbreaking system that synergistically combines wireless power transfer (WPT) and reconfigurable intelligent surfaces (RIS) to significantly enhance both communication performance and computational efficiency. Leveraging deep reinforcement learning (DRL), our system achieves joint optimization of task offloading strategies and resource allocation. Departing from conventional dynamic RIS designs, we implement a fixed phase shift matrix approach, which not only simplifies system implementation but also reduces computational complexity, thereby enhancing both task offloading efficiency and system stability. Extensive simulation results demonstrate that our optimized RIS-assisted approach achieves a remarkable 38.30% improvement in computational rates compared to non-RIS schemes and a 4.83% enhancement over random-phase RIS configurations. These substantial improvements highlight the transformative potential of RIS in boosting computation rates and providing robust solutions for high-demand task offloading scenarios. Our innovative system design represents a significant advancement in intelligent vehicular networks and edge computing technologies, offering substantial application potential for holographic projection task offloading in next-generation vehicular systems.","PeriodicalId":13208,"journal":{"name":"IEEE Transactions on Consumer Electronics","volume":"71 2","pages":"5275-5286"},"PeriodicalIF":10.9000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Holographic Counterpart Computation Offloading via Reconfigurable Intelligent Surfaces in VEC Consumer Electronics\",\"authors\":\"Miaojiang Chen;Huali Xie;Xiaotian Wang;Wenjing Xiao;Ahmed Farouk;Zhiquan Liu;Min Chen;Houbing Herbert Song\",\"doi\":\"10.1109/TCE.2025.3576141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In vehicular edge computing (VEC) Consumer Electronics networks, the integration of holographic counterpart technology presents significant challenges due to its stringent requirements for high data transmission rates and communication reliability. Traditional task offloading methods, constrained by suboptimal communication link quality and energy limitations, are inadequate to meet these demands. This paper introduces a groundbreaking system that synergistically combines wireless power transfer (WPT) and reconfigurable intelligent surfaces (RIS) to significantly enhance both communication performance and computational efficiency. Leveraging deep reinforcement learning (DRL), our system achieves joint optimization of task offloading strategies and resource allocation. Departing from conventional dynamic RIS designs, we implement a fixed phase shift matrix approach, which not only simplifies system implementation but also reduces computational complexity, thereby enhancing both task offloading efficiency and system stability. Extensive simulation results demonstrate that our optimized RIS-assisted approach achieves a remarkable 38.30% improvement in computational rates compared to non-RIS schemes and a 4.83% enhancement over random-phase RIS configurations. These substantial improvements highlight the transformative potential of RIS in boosting computation rates and providing robust solutions for high-demand task offloading scenarios. Our innovative system design represents a significant advancement in intelligent vehicular networks and edge computing technologies, offering substantial application potential for holographic projection task offloading in next-generation vehicular systems.\",\"PeriodicalId\":13208,\"journal\":{\"name\":\"IEEE Transactions on Consumer Electronics\",\"volume\":\"71 2\",\"pages\":\"5275-5286\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Consumer Electronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11022618/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Consumer Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11022618/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在车载边缘计算(VEC)消费电子网络中,由于对高数据传输速率和通信可靠性的严格要求,全息对等体技术的集成面临着重大挑战。传统的任务卸载方法受通信链路质量和能量限制的限制,已不能满足这些需求。本文介绍了一种开创性的系统,该系统协同结合了无线电力传输(WPT)和可重构智能表面(RIS),以显着提高通信性能和计算效率。我们的系统利用深度强化学习(DRL)实现了任务卸载策略和资源分配的联合优化。与传统的动态RIS设计不同,我们采用了固定相移矩阵的方法,不仅简化了系统实现,而且降低了计算复杂度,从而提高了任务卸载效率和系统稳定性。大量的仿真结果表明,与非RIS方案相比,我们优化的RIS辅助方法的计算率提高了38.30%,比随机相位RIS配置提高了4.83%。这些实质性的改进突出了RIS在提高计算率和为高需求任务卸载场景提供强大解决方案方面的变革潜力。我们的创新系统设计代表了智能车辆网络和边缘计算技术的重大进步,为下一代车辆系统中的全息投影任务卸载提供了巨大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Holographic Counterpart Computation Offloading via Reconfigurable Intelligent Surfaces in VEC Consumer Electronics
In vehicular edge computing (VEC) Consumer Electronics networks, the integration of holographic counterpart technology presents significant challenges due to its stringent requirements for high data transmission rates and communication reliability. Traditional task offloading methods, constrained by suboptimal communication link quality and energy limitations, are inadequate to meet these demands. This paper introduces a groundbreaking system that synergistically combines wireless power transfer (WPT) and reconfigurable intelligent surfaces (RIS) to significantly enhance both communication performance and computational efficiency. Leveraging deep reinforcement learning (DRL), our system achieves joint optimization of task offloading strategies and resource allocation. Departing from conventional dynamic RIS designs, we implement a fixed phase shift matrix approach, which not only simplifies system implementation but also reduces computational complexity, thereby enhancing both task offloading efficiency and system stability. Extensive simulation results demonstrate that our optimized RIS-assisted approach achieves a remarkable 38.30% improvement in computational rates compared to non-RIS schemes and a 4.83% enhancement over random-phase RIS configurations. These substantial improvements highlight the transformative potential of RIS in boosting computation rates and providing robust solutions for high-demand task offloading scenarios. Our innovative system design represents a significant advancement in intelligent vehicular networks and edge computing technologies, offering substantial application potential for holographic projection task offloading in next-generation vehicular systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
9.30%
发文量
59
审稿时长
3.3 months
期刊介绍: The main focus for the IEEE Transactions on Consumer Electronics is the engineering and research aspects of the theory, design, construction, manufacture or end use of mass market electronics, systems, software and services for consumers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信