Ali Moghassemi;Laxman Timilsina;S M Imrat Rahman;Ali Arsalan;Grace Muriithi;Elutunji Buraimoh;Gokhan Ozkan;Behnaz Papari;Christopher S. Edrington;Zheyu Zhang;Phani Kumar Chamarthi
{"title":"全电船舶动力系统中电力电子构件的实时改进最近液位控制","authors":"Ali Moghassemi;Laxman Timilsina;S M Imrat Rahman;Ali Arsalan;Grace Muriithi;Elutunji Buraimoh;Gokhan Ozkan;Behnaz Papari;Christopher S. Edrington;Zheyu Zhang;Phani Kumar Chamarthi","doi":"10.1109/TIA.2025.3559049","DOIUrl":null,"url":null,"abstract":"Power electronics building block (PEBB) concept involves integrating fundamental components into functional blocks that can be stacked, extending converter power ratings for all-electric ships (AESs). This modular approach reduces costs, size, weight, design complexity, and maintenance. PEBBs can be realized as modular multi-level converters (MMCs), which offer advantages like modularity, low switching losses, minimal voltage/current quantization, high reliability, and efficiency. However, effective switching control methods are crucial to balance capacitor voltages and suppress circulating currents. This paper proposes an improved nearest level control (NLC) method that employs smoothed trapezoidal reference signals instead of sinusoidal references, aiming to enhance capacitor voltage balancing, suppress circulating currents, and improve the output power quality of PEBBs in AESs. The proposed NLC method is analyzed in real-time for an N-level PEBB connected to an induction machine (IM) with variable speed and torque load. The real-time verification is conducted in the Typhoon HIL606 digital real-time simulator (DRTS). The results validate the feasibility and effectiveness of the proposed NLC method for a three-phase N-level PEBB concept for AESs.","PeriodicalId":13337,"journal":{"name":"IEEE Transactions on Industry Applications","volume":"61 5","pages":"7656-7670"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time Improved Nearest Level Control for Power Electronics Building Blocks in All-Electric Ship Power Systems\",\"authors\":\"Ali Moghassemi;Laxman Timilsina;S M Imrat Rahman;Ali Arsalan;Grace Muriithi;Elutunji Buraimoh;Gokhan Ozkan;Behnaz Papari;Christopher S. Edrington;Zheyu Zhang;Phani Kumar Chamarthi\",\"doi\":\"10.1109/TIA.2025.3559049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power electronics building block (PEBB) concept involves integrating fundamental components into functional blocks that can be stacked, extending converter power ratings for all-electric ships (AESs). This modular approach reduces costs, size, weight, design complexity, and maintenance. PEBBs can be realized as modular multi-level converters (MMCs), which offer advantages like modularity, low switching losses, minimal voltage/current quantization, high reliability, and efficiency. However, effective switching control methods are crucial to balance capacitor voltages and suppress circulating currents. This paper proposes an improved nearest level control (NLC) method that employs smoothed trapezoidal reference signals instead of sinusoidal references, aiming to enhance capacitor voltage balancing, suppress circulating currents, and improve the output power quality of PEBBs in AESs. The proposed NLC method is analyzed in real-time for an N-level PEBB connected to an induction machine (IM) with variable speed and torque load. The real-time verification is conducted in the Typhoon HIL606 digital real-time simulator (DRTS). The results validate the feasibility and effectiveness of the proposed NLC method for a three-phase N-level PEBB concept for AESs.\",\"PeriodicalId\":13337,\"journal\":{\"name\":\"IEEE Transactions on Industry Applications\",\"volume\":\"61 5\",\"pages\":\"7656-7670\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Industry Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10959104/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Industry Applications","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10959104/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Real-time Improved Nearest Level Control for Power Electronics Building Blocks in All-Electric Ship Power Systems
Power electronics building block (PEBB) concept involves integrating fundamental components into functional blocks that can be stacked, extending converter power ratings for all-electric ships (AESs). This modular approach reduces costs, size, weight, design complexity, and maintenance. PEBBs can be realized as modular multi-level converters (MMCs), which offer advantages like modularity, low switching losses, minimal voltage/current quantization, high reliability, and efficiency. However, effective switching control methods are crucial to balance capacitor voltages and suppress circulating currents. This paper proposes an improved nearest level control (NLC) method that employs smoothed trapezoidal reference signals instead of sinusoidal references, aiming to enhance capacitor voltage balancing, suppress circulating currents, and improve the output power quality of PEBBs in AESs. The proposed NLC method is analyzed in real-time for an N-level PEBB connected to an induction machine (IM) with variable speed and torque load. The real-time verification is conducted in the Typhoon HIL606 digital real-time simulator (DRTS). The results validate the feasibility and effectiveness of the proposed NLC method for a three-phase N-level PEBB concept for AESs.
期刊介绍:
The scope of the IEEE Transactions on Industry Applications includes all scope items of the IEEE Industry Applications Society, that is, the advancement of the theory and practice of electrical and electronic engineering in the development, design, manufacture, and application of electrical systems, apparatus, devices, and controls to the processes and equipment of industry and commerce; the promotion of safe, reliable, and economic installations; industry leadership in energy conservation and environmental, health, and safety issues; the creation of voluntary engineering standards and recommended practices; and the professional development of its membership.