遥感小目标检测的多阶信息聚合网络

IF 3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Jinli Zhong, Jianxun Zhang
{"title":"遥感小目标检测的多阶信息聚合网络","authors":"Jinli Zhong,&nbsp;Jianxun Zhang","doi":"10.1016/j.dsp.2025.105537","DOIUrl":null,"url":null,"abstract":"<div><div>In critical fields such as intelligent transportation and national defense security, remote sensing small target detection technology plays an essential role. To effectively overcome the complexity of remote sensing scenes and the weak response of small-scale targets, this paper proposes a lightweight Multi-order Information Aggregation Network (MIANet). MIANet mainly consists of two parts: Cross-spatial Multi-order Information Aggregation Module (CMIAM) and Multi-dimensional Information Enhancement Module (MIEM). Inspired by the research on multi-order interactions in game theory within deep learning, CMIAM can aggregate low-order, mid-order, and high-order information, effectively improving the detection accuracy of small targets in complex remote sensing scenes. Based on the design philosophy of manifolds of interest, MIEM can effectively remove redundant information, and MIEM utilizes a three-branch structure to capture cross-dimensional information interaction, enriching feature representation and achieving the effect of information enhancement. We have validated the performance of our model on multiple remote sensing small target datasets including VEDAI, DIOR, NWPU-VHR10, MVRSD, and SIMD, and achieved excellent results. In particular, for the lightweight MIANet, the accuracy metric <span><math><mtext>m</mtext><mi>A</mi><msub><mrow><mi>P</mi></mrow><mrow><mn>50</mn></mrow></msub></math></span> reached 73.7% on the VEDAI dataset, surpassing the current SOTA method SuperYOLO for remote sensing small target detection on a single modality. On the NWPU-VHR10 dataset, MIANet outperformed SuperYOLO by 2.1% in the <span><math><mtext>m</mtext><mi>A</mi><msub><mrow><mi>P</mi></mrow><mrow><mn>50</mn></mrow></msub></math></span> metric and FFCA-YOLO by 2.2%. On the DIOR dataset, with a parameter count of 9.79M, MIANet achieved an <span><math><mtext>m</mtext><mi>A</mi><msub><mrow><mi>P</mi></mrow><mrow><mn>50</mn></mrow></msub></math></span> metric of 81.3% and an <span><math><mtext>m</mtext><mi>A</mi><msub><mrow><mi>P</mi></mrow><mrow><mn>50</mn><mo>:</mo><mn>95</mn></mrow></msub></math></span> of 60.9%, which demonstrate that our model exhibits strong robustness characteristics. Our code will be made publicly available on <span><span>https://github.com/Liro-o/MIANet</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"168 ","pages":"Article 105537"},"PeriodicalIF":3.0000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-order information aggregation network for remote sensing small target detection\",\"authors\":\"Jinli Zhong,&nbsp;Jianxun Zhang\",\"doi\":\"10.1016/j.dsp.2025.105537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In critical fields such as intelligent transportation and national defense security, remote sensing small target detection technology plays an essential role. To effectively overcome the complexity of remote sensing scenes and the weak response of small-scale targets, this paper proposes a lightweight Multi-order Information Aggregation Network (MIANet). MIANet mainly consists of two parts: Cross-spatial Multi-order Information Aggregation Module (CMIAM) and Multi-dimensional Information Enhancement Module (MIEM). Inspired by the research on multi-order interactions in game theory within deep learning, CMIAM can aggregate low-order, mid-order, and high-order information, effectively improving the detection accuracy of small targets in complex remote sensing scenes. Based on the design philosophy of manifolds of interest, MIEM can effectively remove redundant information, and MIEM utilizes a three-branch structure to capture cross-dimensional information interaction, enriching feature representation and achieving the effect of information enhancement. We have validated the performance of our model on multiple remote sensing small target datasets including VEDAI, DIOR, NWPU-VHR10, MVRSD, and SIMD, and achieved excellent results. In particular, for the lightweight MIANet, the accuracy metric <span><math><mtext>m</mtext><mi>A</mi><msub><mrow><mi>P</mi></mrow><mrow><mn>50</mn></mrow></msub></math></span> reached 73.7% on the VEDAI dataset, surpassing the current SOTA method SuperYOLO for remote sensing small target detection on a single modality. On the NWPU-VHR10 dataset, MIANet outperformed SuperYOLO by 2.1% in the <span><math><mtext>m</mtext><mi>A</mi><msub><mrow><mi>P</mi></mrow><mrow><mn>50</mn></mrow></msub></math></span> metric and FFCA-YOLO by 2.2%. On the DIOR dataset, with a parameter count of 9.79M, MIANet achieved an <span><math><mtext>m</mtext><mi>A</mi><msub><mrow><mi>P</mi></mrow><mrow><mn>50</mn></mrow></msub></math></span> metric of 81.3% and an <span><math><mtext>m</mtext><mi>A</mi><msub><mrow><mi>P</mi></mrow><mrow><mn>50</mn><mo>:</mo><mn>95</mn></mrow></msub></math></span> of 60.9%, which demonstrate that our model exhibits strong robustness characteristics. Our code will be made publicly available on <span><span>https://github.com/Liro-o/MIANet</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":51011,\"journal\":{\"name\":\"Digital Signal Processing\",\"volume\":\"168 \",\"pages\":\"Article 105537\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1051200425005597\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051200425005597","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在智能交通、国防安全等关键领域,遥感小目标探测技术发挥着至关重要的作用。为了有效克服遥感场景的复杂性和小尺度目标的弱响应,提出了一种轻量级的多阶信息聚合网络(MIANet)。MIANet主要由两部分组成:跨空间多阶信息聚合模块(CMIAM)和多维信息增强模块(MIEM)。受深度学习中博弈论中多阶相互作用研究的启发,CMIAM可以聚合低阶、中阶和高阶信息,有效提高复杂遥感场景中小目标的检测精度。基于感兴趣流形的设计思想,MIEM可以有效地去除冗余信息,并利用三分支结构捕获跨维信息交互,丰富特征表示,达到信息增强的效果。我们在VEDAI、DIOR、NWPU-VHR10、MVRSD、SIMD等多个遥感小目标数据集上验证了模型的性能,取得了优异的效果。特别是,对于轻量级的MIANet,在VEDAI数据集上的精度度量mAP50达到73.7%,超过了当前SOTA方法SuperYOLO在单模态遥感小目标检测中的应用。在NWPU-VHR10数据集上,MIANet在mAP50指标上比SuperYOLO高出2.1%,比FFCA-YOLO高出2.2%。在DIOR数据集上,当参数数为9.79M时,MIANet实现了81.3%的mAP50度量和60.9%的mAP50:95度量,这表明我们的模型具有很强的鲁棒性特征。我们的代码将在https://github.com/Liro-o/MIANet上公开发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-order information aggregation network for remote sensing small target detection
In critical fields such as intelligent transportation and national defense security, remote sensing small target detection technology plays an essential role. To effectively overcome the complexity of remote sensing scenes and the weak response of small-scale targets, this paper proposes a lightweight Multi-order Information Aggregation Network (MIANet). MIANet mainly consists of two parts: Cross-spatial Multi-order Information Aggregation Module (CMIAM) and Multi-dimensional Information Enhancement Module (MIEM). Inspired by the research on multi-order interactions in game theory within deep learning, CMIAM can aggregate low-order, mid-order, and high-order information, effectively improving the detection accuracy of small targets in complex remote sensing scenes. Based on the design philosophy of manifolds of interest, MIEM can effectively remove redundant information, and MIEM utilizes a three-branch structure to capture cross-dimensional information interaction, enriching feature representation and achieving the effect of information enhancement. We have validated the performance of our model on multiple remote sensing small target datasets including VEDAI, DIOR, NWPU-VHR10, MVRSD, and SIMD, and achieved excellent results. In particular, for the lightweight MIANet, the accuracy metric mAP50 reached 73.7% on the VEDAI dataset, surpassing the current SOTA method SuperYOLO for remote sensing small target detection on a single modality. On the NWPU-VHR10 dataset, MIANet outperformed SuperYOLO by 2.1% in the mAP50 metric and FFCA-YOLO by 2.2%. On the DIOR dataset, with a parameter count of 9.79M, MIANet achieved an mAP50 metric of 81.3% and an mAP50:95 of 60.9%, which demonstrate that our model exhibits strong robustness characteristics. Our code will be made publicly available on https://github.com/Liro-o/MIANet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Digital Signal Processing
Digital Signal Processing 工程技术-工程:电子与电气
CiteScore
5.30
自引率
17.20%
发文量
435
审稿时长
66 days
期刊介绍: Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal. The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as: • big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信