{"title":"基于点样本的向量值函数的最优预测","authors":"Simon Foucart","doi":"10.1016/j.jco.2025.101981","DOIUrl":null,"url":null,"abstract":"<div><div>Predicting the value of a function <em>f</em> at a new point given its values at old points is an ubiquitous scientific endeavor, somewhat less developed when <em>f</em> produces several values depending on one another, e.g. when it outputs a probability vector. Considering the points as fixed (not random) entities and focusing on the worst-case, this article uncovers a prediction procedure that is optimal relatively to some model-set information about the vector-valued function <em>f</em>. When the model sets are convex, this procedure turns out to be an affine map constructed by solving a convex optimization program. The theoretical result is specified in the two practical frameworks of (reproducing kernel) Hilbert spaces and of spaces of continuous functions.</div></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"92 ","pages":"Article 101981"},"PeriodicalIF":1.8000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal prediction of vector-valued functions from point samples\",\"authors\":\"Simon Foucart\",\"doi\":\"10.1016/j.jco.2025.101981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Predicting the value of a function <em>f</em> at a new point given its values at old points is an ubiquitous scientific endeavor, somewhat less developed when <em>f</em> produces several values depending on one another, e.g. when it outputs a probability vector. Considering the points as fixed (not random) entities and focusing on the worst-case, this article uncovers a prediction procedure that is optimal relatively to some model-set information about the vector-valued function <em>f</em>. When the model sets are convex, this procedure turns out to be an affine map constructed by solving a convex optimization program. The theoretical result is specified in the two practical frameworks of (reproducing kernel) Hilbert spaces and of spaces of continuous functions.</div></div>\",\"PeriodicalId\":50227,\"journal\":{\"name\":\"Journal of Complexity\",\"volume\":\"92 \",\"pages\":\"Article 101981\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Complexity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X25000597\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X25000597","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Optimal prediction of vector-valued functions from point samples
Predicting the value of a function f at a new point given its values at old points is an ubiquitous scientific endeavor, somewhat less developed when f produces several values depending on one another, e.g. when it outputs a probability vector. Considering the points as fixed (not random) entities and focusing on the worst-case, this article uncovers a prediction procedure that is optimal relatively to some model-set information about the vector-valued function f. When the model sets are convex, this procedure turns out to be an affine map constructed by solving a convex optimization program. The theoretical result is specified in the two practical frameworks of (reproducing kernel) Hilbert spaces and of spaces of continuous functions.
期刊介绍:
The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited.
Areas Include:
• Approximation theory
• Biomedical computing
• Compressed computing and sensing
• Computational finance
• Computational number theory
• Computational stochastics
• Control theory
• Cryptography
• Design of experiments
• Differential equations
• Discrete problems
• Distributed and parallel computation
• High and infinite-dimensional problems
• Information-based complexity
• Inverse and ill-posed problems
• Machine learning
• Markov chain Monte Carlo
• Monte Carlo and quasi-Monte Carlo
• Multivariate integration and approximation
• Noisy data
• Nonlinear and algebraic equations
• Numerical analysis
• Operator equations
• Optimization
• Quantum computing
• Scientific computation
• Tractability of multivariate problems
• Vision and image understanding.