蒙脱土增强甲基汞的微生物降解

IF 5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Qin Liu , Hui Yin , Baohua Gu , Xin-Quan Zhou , Xiaolong Yue , Qiaoyun Huang , Yu-Rong Liu
{"title":"蒙脱土增强甲基汞的微生物降解","authors":"Qin Liu ,&nbsp;Hui Yin ,&nbsp;Baohua Gu ,&nbsp;Xin-Quan Zhou ,&nbsp;Xiaolong Yue ,&nbsp;Qiaoyun Huang ,&nbsp;Yu-Rong Liu","doi":"10.1016/j.gca.2025.08.014","DOIUrl":null,"url":null,"abstract":"<div><div>The potent neurotoxic methylmercury (MeHg) can be detoxified through microbial demethylation. The colonization and functions of microbes are influenced by minerals in the environment; however, the role of minerals in mediating microbial degradation of MeHg remains poorly understood. Here, we investigated the effects of three typical soil minerals (i.e., montmorillonite, ferrihydrite, and birnessite) on MeHg degradation by <em>Chitinophaga dinghuensis</em>. The addition of montmorillonite increased the MeHg degradation efficiency by <em>C</em>. <em>dinghuensis</em> from 27.27 % to 44.84 % in 120 h, representing a 1.6-fold improvement compared to the mineral-free system, whereas ferrihydrite or birnessite had negligible effects on the MeHg degradation. This could be attributed that montmorillonite offered bacterial colonization surfaces for survival and alleviated MeHg-induced cell toxicity by reducing the production of intracellular reactive oxygen species. Additionally, montmorillonite released magnesium ions to improve cell metabolisms for the mineral-enhanced demethylation of MeHg. We also found that Fe<sup>2+</sup> oxidation at the bacteria-montmorillonite interface could further contribute to the enhanced MeHg degradation by bacteria. Together, our work provides new insights into the crucial role of montmorillonite in mediating microbially-driven MeHg degradation, with important implications for understanding Hg biogeochemical cycles and mitigating environmental risks of the neurotoxin.</div></div>","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"405 ","pages":"Pages 44-54"},"PeriodicalIF":5.0000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced microbial degradation of methylmercury by montmorillonite\",\"authors\":\"Qin Liu ,&nbsp;Hui Yin ,&nbsp;Baohua Gu ,&nbsp;Xin-Quan Zhou ,&nbsp;Xiaolong Yue ,&nbsp;Qiaoyun Huang ,&nbsp;Yu-Rong Liu\",\"doi\":\"10.1016/j.gca.2025.08.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The potent neurotoxic methylmercury (MeHg) can be detoxified through microbial demethylation. The colonization and functions of microbes are influenced by minerals in the environment; however, the role of minerals in mediating microbial degradation of MeHg remains poorly understood. Here, we investigated the effects of three typical soil minerals (i.e., montmorillonite, ferrihydrite, and birnessite) on MeHg degradation by <em>Chitinophaga dinghuensis</em>. The addition of montmorillonite increased the MeHg degradation efficiency by <em>C</em>. <em>dinghuensis</em> from 27.27 % to 44.84 % in 120 h, representing a 1.6-fold improvement compared to the mineral-free system, whereas ferrihydrite or birnessite had negligible effects on the MeHg degradation. This could be attributed that montmorillonite offered bacterial colonization surfaces for survival and alleviated MeHg-induced cell toxicity by reducing the production of intracellular reactive oxygen species. Additionally, montmorillonite released magnesium ions to improve cell metabolisms for the mineral-enhanced demethylation of MeHg. We also found that Fe<sup>2+</sup> oxidation at the bacteria-montmorillonite interface could further contribute to the enhanced MeHg degradation by bacteria. Together, our work provides new insights into the crucial role of montmorillonite in mediating microbially-driven MeHg degradation, with important implications for understanding Hg biogeochemical cycles and mitigating environmental risks of the neurotoxin.</div></div>\",\"PeriodicalId\":327,\"journal\":{\"name\":\"Geochimica et Cosmochimica Acta\",\"volume\":\"405 \",\"pages\":\"Pages 44-54\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochimica et Cosmochimica Acta\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016703725004211\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016703725004211","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

强大的神经毒性甲基汞(MeHg)可以通过微生物去甲基化解毒。微生物的定植和功能受环境中矿物质的影响;然而,矿物质在介导甲基汞微生物降解中的作用仍然知之甚少。本文研究了3种典型土壤矿物(蒙脱石、水合铁铁矿和硼镁矿)对丁湖几丁食藻降解甲基汞的影响。蒙脱土的加入使丁湖赤霉素降解MeHg的效率在120 h内由27.27%提高到44.84%,比不含矿物的体系提高了1.6倍,而水合铁或硼硅矿对MeHg的降解作用可以忽略。这可能归因于蒙脱土为细菌的生存提供了定植表面,并通过减少细胞内活性氧的产生减轻了甲基汞诱导的细胞毒性。此外,蒙脱土释放镁离子,改善细胞代谢,促进甲基汞的矿物质增强去甲基化。我们还发现细菌-蒙脱土界面的Fe2+氧化可以进一步促进细菌对MeHg的降解。总之,我们的工作为蒙脱土在介导微生物驱动的甲基汞降解中的关键作用提供了新的见解,对理解汞的生物地球化学循环和减轻神经毒素的环境风险具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced microbial degradation of methylmercury by montmorillonite
The potent neurotoxic methylmercury (MeHg) can be detoxified through microbial demethylation. The colonization and functions of microbes are influenced by minerals in the environment; however, the role of minerals in mediating microbial degradation of MeHg remains poorly understood. Here, we investigated the effects of three typical soil minerals (i.e., montmorillonite, ferrihydrite, and birnessite) on MeHg degradation by Chitinophaga dinghuensis. The addition of montmorillonite increased the MeHg degradation efficiency by C. dinghuensis from 27.27 % to 44.84 % in 120 h, representing a 1.6-fold improvement compared to the mineral-free system, whereas ferrihydrite or birnessite had negligible effects on the MeHg degradation. This could be attributed that montmorillonite offered bacterial colonization surfaces for survival and alleviated MeHg-induced cell toxicity by reducing the production of intracellular reactive oxygen species. Additionally, montmorillonite released magnesium ions to improve cell metabolisms for the mineral-enhanced demethylation of MeHg. We also found that Fe2+ oxidation at the bacteria-montmorillonite interface could further contribute to the enhanced MeHg degradation by bacteria. Together, our work provides new insights into the crucial role of montmorillonite in mediating microbially-driven MeHg degradation, with important implications for understanding Hg biogeochemical cycles and mitigating environmental risks of the neurotoxin.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geochimica et Cosmochimica Acta
Geochimica et Cosmochimica Acta 地学-地球化学与地球物理
CiteScore
9.60
自引率
14.00%
发文量
437
审稿时长
6 months
期刊介绍: Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes: 1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids 2). Igneous and metamorphic petrology 3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth 4). Organic geochemistry 5). Isotope geochemistry 6). Meteoritics and meteorite impacts 7). Lunar science; and 8). Planetary geochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信