生成数字遗产双胞胎的人工智能工具增强了教育游戏的故事叙述能力

Q1 Social Sciences
Nikolaos Kilis, Efstathia Martinopoulou, Giorgos Terzoglou, Efstathios Bozikas, Odysseas Sofikitis, Panagiotis Lepentsiotis, Michael Chatzakis, Nikolaos Dimitriou, Dimitrios Tzovaras
{"title":"生成数字遗产双胞胎的人工智能工具增强了教育游戏的故事叙述能力","authors":"Nikolaos Kilis,&nbsp;Efstathia Martinopoulou,&nbsp;Giorgos Terzoglou,&nbsp;Efstathios Bozikas,&nbsp;Odysseas Sofikitis,&nbsp;Panagiotis Lepentsiotis,&nbsp;Michael Chatzakis,&nbsp;Nikolaos Dimitriou,&nbsp;Dimitrios Tzovaras","doi":"10.1016/j.daach.2025.e00451","DOIUrl":null,"url":null,"abstract":"<div><div>Digitization of Cultural Heritage (CH) artifacts contributes to the preservation of their historical and societal significance. Their digital counterparts can be widely disseminated through Building Information Modeling applications, historical databases, serious video games, digital educational programs, etc. In this context, we present a (semi-) automated user-friendly framework for 3D asset acquisition, enhancement, and semantic enrichment. These include computer vision modules developed for super-resolution and style transfer on 2D video frames, which are employed to generate 3D assets via multi-view reconstruction. The proposed framework further supports an Active Learning (AL) process that produces images from novel viewing angles inside virtual environments. These views are exploited to improve previously generated 3D assets. 3D content creators can utilize the proposed framework to digitize new or modify and enhance existing assets regardless of size or shape with minor editing from a single video. Several image quality assessment metrics indicate the validity of our methodology.</div></div>","PeriodicalId":38225,"journal":{"name":"Digital Applications in Archaeology and Cultural Heritage","volume":"38 ","pages":"Article e00451"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI tools for generating Digital Heritage Twins enhancing storytelling in educational games\",\"authors\":\"Nikolaos Kilis,&nbsp;Efstathia Martinopoulou,&nbsp;Giorgos Terzoglou,&nbsp;Efstathios Bozikas,&nbsp;Odysseas Sofikitis,&nbsp;Panagiotis Lepentsiotis,&nbsp;Michael Chatzakis,&nbsp;Nikolaos Dimitriou,&nbsp;Dimitrios Tzovaras\",\"doi\":\"10.1016/j.daach.2025.e00451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Digitization of Cultural Heritage (CH) artifacts contributes to the preservation of their historical and societal significance. Their digital counterparts can be widely disseminated through Building Information Modeling applications, historical databases, serious video games, digital educational programs, etc. In this context, we present a (semi-) automated user-friendly framework for 3D asset acquisition, enhancement, and semantic enrichment. These include computer vision modules developed for super-resolution and style transfer on 2D video frames, which are employed to generate 3D assets via multi-view reconstruction. The proposed framework further supports an Active Learning (AL) process that produces images from novel viewing angles inside virtual environments. These views are exploited to improve previously generated 3D assets. 3D content creators can utilize the proposed framework to digitize new or modify and enhance existing assets regardless of size or shape with minor editing from a single video. Several image quality assessment metrics indicate the validity of our methodology.</div></div>\",\"PeriodicalId\":38225,\"journal\":{\"name\":\"Digital Applications in Archaeology and Cultural Heritage\",\"volume\":\"38 \",\"pages\":\"Article e00451\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Applications in Archaeology and Cultural Heritage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212054825000530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Applications in Archaeology and Cultural Heritage","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212054825000530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

文化遗产(CH)文物的数字化有助于保存其历史和社会意义。它们的数字版本可以通过建筑信息模型应用程序、历史数据库、严肃的视频游戏、数字教育节目等广泛传播。在这种情况下,我们提出了一个(半)自动化的用户友好框架,用于3D资产获取、增强和语义丰富。其中包括为2D视频帧的超分辨率和风格转移而开发的计算机视觉模块,用于通过多视图重建生成3D资产。提出的框架进一步支持主动学习(AL)过程,该过程可以在虚拟环境中从新的视角生成图像。这些视图被用来改进以前生成的3D资产。3D内容创建者可以利用提议的框架对单个视频进行小幅度编辑,以数字化新的或修改和增强现有资产,无论其大小或形状如何。几个图像质量评估指标表明我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI tools for generating Digital Heritage Twins enhancing storytelling in educational games
Digitization of Cultural Heritage (CH) artifacts contributes to the preservation of their historical and societal significance. Their digital counterparts can be widely disseminated through Building Information Modeling applications, historical databases, serious video games, digital educational programs, etc. In this context, we present a (semi-) automated user-friendly framework for 3D asset acquisition, enhancement, and semantic enrichment. These include computer vision modules developed for super-resolution and style transfer on 2D video frames, which are employed to generate 3D assets via multi-view reconstruction. The proposed framework further supports an Active Learning (AL) process that produces images from novel viewing angles inside virtual environments. These views are exploited to improve previously generated 3D assets. 3D content creators can utilize the proposed framework to digitize new or modify and enhance existing assets regardless of size or shape with minor editing from a single video. Several image quality assessment metrics indicate the validity of our methodology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
33
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信