Orlicz-Sobolev空间分数阶拉普拉斯算子解的Hopf引理和边界行为

IF 1.3 2区 数学 Q1 MATHEMATICS
Pablo Ochoa , Ariel Salort
{"title":"Orlicz-Sobolev空间分数阶拉普拉斯算子解的Hopf引理和边界行为","authors":"Pablo Ochoa ,&nbsp;Ariel Salort","doi":"10.1016/j.na.2025.113923","DOIUrl":null,"url":null,"abstract":"<div><div>In this article we study different extensions of the celebrated Hopf’s boundary lemma within the context of a family of nonlocal, nonlinear and nonstandard growth operators. More precisely, we examine the behavior of solutions of the fractional <span><math><mi>a</mi></math></span>-Laplacian operator near the boundary of a domain satisfying the interior ball condition. Our approach addresses problems involving both constant-sign and sign-changing potentials.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"262 ","pages":"Article 113923"},"PeriodicalIF":1.3000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hopf’s lemmas and boundary behavior of solutions to the fractional Laplacian in Orlicz-Sobolev spaces\",\"authors\":\"Pablo Ochoa ,&nbsp;Ariel Salort\",\"doi\":\"10.1016/j.na.2025.113923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article we study different extensions of the celebrated Hopf’s boundary lemma within the context of a family of nonlocal, nonlinear and nonstandard growth operators. More precisely, we examine the behavior of solutions of the fractional <span><math><mi>a</mi></math></span>-Laplacian operator near the boundary of a domain satisfying the interior ball condition. Our approach addresses problems involving both constant-sign and sign-changing potentials.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"262 \",\"pages\":\"Article 113923\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25001774\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001774","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文在一类非局部、非线性和非标准生长算子的背景下,研究了著名的Hopf边界引理的不同推广。更确切地说,我们研究了分数阶a-拉普拉斯算子在满足内球条件的区域边界附近的解的行为。我们的方法解决了涉及常符号和变符号势的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hopf’s lemmas and boundary behavior of solutions to the fractional Laplacian in Orlicz-Sobolev spaces
In this article we study different extensions of the celebrated Hopf’s boundary lemma within the context of a family of nonlocal, nonlinear and nonstandard growth operators. More precisely, we examine the behavior of solutions of the fractional a-Laplacian operator near the boundary of a domain satisfying the interior ball condition. Our approach addresses problems involving both constant-sign and sign-changing potentials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信