探索KAN作为下一代mlp在基于脑电图的癫痫检测中的替代品

Eman Allogmani
{"title":"探索KAN作为下一代mlp在基于脑电图的癫痫检测中的替代品","authors":"Eman Allogmani","doi":"10.1016/j.neuri.2025.100226","DOIUrl":null,"url":null,"abstract":"<div><div>Epilepsy is a chronic neurological disorder characterized by recurrent seizures due to abnormal brain activity. Accurate detection of seizures from electroencephalogram (EEG) signals is critical, but it is often challenged by signal noise and class imbalance in real-world data. In this study, we systematically evaluate Kolmogorov–Arnold Networks (KANs)—a recent neural architecture based on the Kolmogorov–Arnold representation theorem—as an alternative to Multi-Layer Perceptrons (MLPs) for EEG-based seizure classification, with a focus on model robustness under noisy conditions. This is the first comprehensive evaluation of KAN's robustness under multiplicative noise in the context of EEG seizure detection. Experiments were conducted using two widely used EEG datasets: the Bonn dataset and the CHB-MIT Scalp EEG dataset. Across multiple network configurations and varying levels of multiplicative noise, we assess performance using F1 Score, AUROC, AUPRC, Sensitivity, and Specificity. Our findings show that KAN achieves more stable performance than MLPs under noisy conditions, particularly in smaller architectures. These results suggest that KAN may offer a robust and generalizable approach for seizure detection in noise-prone clinical settings.</div></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"5 4","pages":"Article 100226"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring KAN as a next-generation replacement for MLPs in EEG-based seizure detection\",\"authors\":\"Eman Allogmani\",\"doi\":\"10.1016/j.neuri.2025.100226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Epilepsy is a chronic neurological disorder characterized by recurrent seizures due to abnormal brain activity. Accurate detection of seizures from electroencephalogram (EEG) signals is critical, but it is often challenged by signal noise and class imbalance in real-world data. In this study, we systematically evaluate Kolmogorov–Arnold Networks (KANs)—a recent neural architecture based on the Kolmogorov–Arnold representation theorem—as an alternative to Multi-Layer Perceptrons (MLPs) for EEG-based seizure classification, with a focus on model robustness under noisy conditions. This is the first comprehensive evaluation of KAN's robustness under multiplicative noise in the context of EEG seizure detection. Experiments were conducted using two widely used EEG datasets: the Bonn dataset and the CHB-MIT Scalp EEG dataset. Across multiple network configurations and varying levels of multiplicative noise, we assess performance using F1 Score, AUROC, AUPRC, Sensitivity, and Specificity. Our findings show that KAN achieves more stable performance than MLPs under noisy conditions, particularly in smaller architectures. These results suggest that KAN may offer a robust and generalizable approach for seizure detection in noise-prone clinical settings.</div></div>\",\"PeriodicalId\":74295,\"journal\":{\"name\":\"Neuroscience informatics\",\"volume\":\"5 4\",\"pages\":\"Article 100226\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277252862500041X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277252862500041X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

癫痫是一种慢性神经系统疾病,其特征是由于大脑活动异常引起的反复发作。从脑电图(EEG)信号中准确检测癫痫发作是至关重要的,但它经常受到现实数据中信号噪声和类别不平衡的挑战。在本研究中,我们系统地评估了Kolmogorov-Arnold网络(KANs)——一种基于Kolmogorov-Arnold表示定理的最新神经结构——作为多层感知器(mlp)的替代方案,用于基于脑电图的癫痫分类,重点关注了模型在噪声条件下的鲁棒性。这是在脑电图癫痫发作检测的背景下,首次对KAN在乘性噪声下的鲁棒性进行综合评价。实验使用两个广泛使用的脑电数据集:波恩数据集和CHB-MIT头皮脑电数据集。在多个网络配置和不同级别的乘法噪声中,我们使用F1评分、AUROC、AUPRC、灵敏度和特异性来评估性能。我们的研究结果表明,在噪声条件下,特别是在较小的架构中,KAN比mlp实现了更稳定的性能。这些结果表明,KAN可能为易受噪声影响的临床环境中的癫痫发作检测提供了一种强大且可推广的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring KAN as a next-generation replacement for MLPs in EEG-based seizure detection
Epilepsy is a chronic neurological disorder characterized by recurrent seizures due to abnormal brain activity. Accurate detection of seizures from electroencephalogram (EEG) signals is critical, but it is often challenged by signal noise and class imbalance in real-world data. In this study, we systematically evaluate Kolmogorov–Arnold Networks (KANs)—a recent neural architecture based on the Kolmogorov–Arnold representation theorem—as an alternative to Multi-Layer Perceptrons (MLPs) for EEG-based seizure classification, with a focus on model robustness under noisy conditions. This is the first comprehensive evaluation of KAN's robustness under multiplicative noise in the context of EEG seizure detection. Experiments were conducted using two widely used EEG datasets: the Bonn dataset and the CHB-MIT Scalp EEG dataset. Across multiple network configurations and varying levels of multiplicative noise, we assess performance using F1 Score, AUROC, AUPRC, Sensitivity, and Specificity. Our findings show that KAN achieves more stable performance than MLPs under noisy conditions, particularly in smaller architectures. These results suggest that KAN may offer a robust and generalizable approach for seizure detection in noise-prone clinical settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuroscience informatics
Neuroscience informatics Surgery, Radiology and Imaging, Information Systems, Neurology, Artificial Intelligence, Computer Science Applications, Signal Processing, Critical Care and Intensive Care Medicine, Health Informatics, Clinical Neurology, Pathology and Medical Technology
自引率
0.00%
发文量
0
审稿时长
57 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信