非线性因子模型中基于深度学习的残差:低信噪比回报的精度矩阵估计

IF 4 3区 经济学 Q1 ECONOMICS
Mehmet Caner , Maurizio Daniele
{"title":"非线性因子模型中基于深度学习的残差:低信噪比回报的精度矩阵估计","authors":"Mehmet Caner ,&nbsp;Maurizio Daniele","doi":"10.1016/j.jeconom.2025.106083","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a consistent estimator and rate of convergence for the precision matrix of asset returns in large portfolios using a non-linear factor model within the deep learning framework. Our estimator remains valid even in low signal-to-noise ratio environments typical for financial markets and is compatible with the weak factor framework. Our theoretical analysis establishes uniform bounds on expected estimation risk based on deep neural networks for an expanding number of assets. Additionally, we provide a new consistent data-dependent estimator of error covariance in deep neural networks. Our models demonstrate superior accuracy in extensive simulations and the empirical application.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"251 ","pages":"Article 106083"},"PeriodicalIF":4.0000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning based residuals in non-linear factor models: Precision matrix estimation of returns with low signal-to-noise ratio\",\"authors\":\"Mehmet Caner ,&nbsp;Maurizio Daniele\",\"doi\":\"10.1016/j.jeconom.2025.106083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces a consistent estimator and rate of convergence for the precision matrix of asset returns in large portfolios using a non-linear factor model within the deep learning framework. Our estimator remains valid even in low signal-to-noise ratio environments typical for financial markets and is compatible with the weak factor framework. Our theoretical analysis establishes uniform bounds on expected estimation risk based on deep neural networks for an expanding number of assets. Additionally, we provide a new consistent data-dependent estimator of error covariance in deep neural networks. Our models demonstrate superior accuracy in extensive simulations and the empirical application.</div></div>\",\"PeriodicalId\":15629,\"journal\":{\"name\":\"Journal of Econometrics\",\"volume\":\"251 \",\"pages\":\"Article 106083\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030440762500137X\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030440762500137X","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文利用深度学习框架中的非线性因子模型,介绍了大型投资组合中资产收益精度矩阵的一致估计量和收敛速度。我们的估计器即使在金融市场典型的低信噪比环境中仍然有效,并且与弱因子框架兼容。我们的理论分析建立了基于深度神经网络的期望估计风险的统一界限。此外,我们还提供了一种新的基于数据的深度神经网络误差协方差估计方法。我们的模型在广泛的模拟和经验应用中显示出优越的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning based residuals in non-linear factor models: Precision matrix estimation of returns with low signal-to-noise ratio
This paper introduces a consistent estimator and rate of convergence for the precision matrix of asset returns in large portfolios using a non-linear factor model within the deep learning framework. Our estimator remains valid even in low signal-to-noise ratio environments typical for financial markets and is compatible with the weak factor framework. Our theoretical analysis establishes uniform bounds on expected estimation risk based on deep neural networks for an expanding number of assets. Additionally, we provide a new consistent data-dependent estimator of error covariance in deep neural networks. Our models demonstrate superior accuracy in extensive simulations and the empirical application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信