基于自然语言处理的语义感知迁移学习框架在有限数据下预测复合材料棒的跨材料结合强度

IF 8 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Pei-Fu Zhang , Daxu Zhang , Qi Zhao , Xuan Zhao , Yiliyaer Tuerxunmaimaiti
{"title":"基于自然语言处理的语义感知迁移学习框架在有限数据下预测复合材料棒的跨材料结合强度","authors":"Pei-Fu Zhang ,&nbsp;Daxu Zhang ,&nbsp;Qi Zhao ,&nbsp;Xuan Zhao ,&nbsp;Yiliyaer Tuerxunmaimaiti","doi":"10.1016/j.engappai.2025.112011","DOIUrl":null,"url":null,"abstract":"<div><div>This study develops a novel transfer learning (TL) framework integrating natural language processing (NLP) and deep learning (DL) to predict the bond strength of fiber-reinforced polymer (FRP) composite bars in ultra-high-performance seawater sea-sand concrete (UHPSSC) using limited experimental data. The framework incorporates an NLP data processor to handle textual variables, a gated transformer to enhance parameter representations, and DL models for regression. Through leveraging the characteristics of seawater sea-sand concrete (SWSSC) and ultra-high-performance concrete (UHPC), it enables effective TL from large FRP–SWSSC/UHPC datasets to smaller FRP–UHPSSC datasets. Three pre-trained models were developed using FRP–SWSSC, FRP–UHPC, and combined datasets, respectively, and then fine-tuned on FRP–UHPSSC data to create three TL models. Compared with traditional machine learning (ML) models such as XGBoost and random forest (RF) trained directly on FRP–UHPSSC data, the proposed TL models achieved significantly higher predictive accuracy. Specifically, the optimal-performing TL model fine-tuned using combined FRP–SWSSC/UHPC data, achieved an R<sup>2</sup> of 0.914 and root mean square error (RMSE) of 0.75 on the test set, corresponding to a 13 % increase in R<sup>2</sup> and a 47.6 % reduction in RMSE relative to the optimal ML model. Furthermore, NLP-based textual representation improved the TL model's test R<sup>2</sup> from 0.876 to 0.914, highlighting the effectiveness in handling tabular data. The TL model also demonstrates semantic recognition capabilities, addressing variations in parameter expressions and dimensionality, enhancing robustness across scenarios. Overall, the proposed NLP-based TL framework effectively integrates heterogeneous material knowledge and substantially enhances predictive performance and generalization, offering a promising approach for data-limited engineering applications.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"160 ","pages":"Article 112011"},"PeriodicalIF":8.0000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A semantic-aware transfer learning framework via natural language processing to predict the cross-material bond strength of composite bars with limited data\",\"authors\":\"Pei-Fu Zhang ,&nbsp;Daxu Zhang ,&nbsp;Qi Zhao ,&nbsp;Xuan Zhao ,&nbsp;Yiliyaer Tuerxunmaimaiti\",\"doi\":\"10.1016/j.engappai.2025.112011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study develops a novel transfer learning (TL) framework integrating natural language processing (NLP) and deep learning (DL) to predict the bond strength of fiber-reinforced polymer (FRP) composite bars in ultra-high-performance seawater sea-sand concrete (UHPSSC) using limited experimental data. The framework incorporates an NLP data processor to handle textual variables, a gated transformer to enhance parameter representations, and DL models for regression. Through leveraging the characteristics of seawater sea-sand concrete (SWSSC) and ultra-high-performance concrete (UHPC), it enables effective TL from large FRP–SWSSC/UHPC datasets to smaller FRP–UHPSSC datasets. Three pre-trained models were developed using FRP–SWSSC, FRP–UHPC, and combined datasets, respectively, and then fine-tuned on FRP–UHPSSC data to create three TL models. Compared with traditional machine learning (ML) models such as XGBoost and random forest (RF) trained directly on FRP–UHPSSC data, the proposed TL models achieved significantly higher predictive accuracy. Specifically, the optimal-performing TL model fine-tuned using combined FRP–SWSSC/UHPC data, achieved an R<sup>2</sup> of 0.914 and root mean square error (RMSE) of 0.75 on the test set, corresponding to a 13 % increase in R<sup>2</sup> and a 47.6 % reduction in RMSE relative to the optimal ML model. Furthermore, NLP-based textual representation improved the TL model's test R<sup>2</sup> from 0.876 to 0.914, highlighting the effectiveness in handling tabular data. The TL model also demonstrates semantic recognition capabilities, addressing variations in parameter expressions and dimensionality, enhancing robustness across scenarios. Overall, the proposed NLP-based TL framework effectively integrates heterogeneous material knowledge and substantially enhances predictive performance and generalization, offering a promising approach for data-limited engineering applications.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":\"160 \",\"pages\":\"Article 112011\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197625020196\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197625020196","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本研究开发了一种新颖的迁移学习(TL)框架,将自然语言处理(NLP)和深度学习(DL)相结合,利用有限的实验数据预测超高性能海水海砂混凝土(UHPSSC)中纤维增强聚合物(FRP)复合棒的粘结强度。该框架结合了一个NLP数据处理器来处理文本变量,一个门控转换器来增强参数表示,以及用于回归的DL模型。通过利用海水海砂混凝土(SWSSC)和超高性能混凝土(UHPC)的特性,它可以从大型FRP-SWSSC /UHPC数据集有效地迁移到较小的FRP-UHPSSC数据集。分别使用FRP-SWSSC、FRP-UHPC和组合数据集建立了3个预训练模型,然后对FRP-UHPSSC数据进行微调,建立了3个TL模型。与传统的机器学习(ML)模型(如XGBoost和直接在FRP-UHPSSC数据上训练的随机森林(RF))相比,所提出的TL模型具有更高的预测精度。具体来说,使用FRP-SWSSC /UHPC联合数据进行微调的性能最佳的TL模型,在测试集上实现了R2为0.914,均方根误差(RMSE)为0.75,相对于最优ML模型,R2增加了13%,RMSE减少了47.6%。此外,基于nlp的文本表示将TL模型的检验R2从0.876提高到0.914,突出了处理表格数据的有效性。TL模型还展示了语义识别能力,处理参数表达式和维度的变化,增强了跨场景的鲁棒性。总体而言,所提出的基于nlp的TL框架有效地集成了异构材料知识,并大大提高了预测性能和泛化能力,为数据有限的工程应用提供了一种有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A semantic-aware transfer learning framework via natural language processing to predict the cross-material bond strength of composite bars with limited data

A semantic-aware transfer learning framework via natural language processing to predict the cross-material bond strength of composite bars with limited data
This study develops a novel transfer learning (TL) framework integrating natural language processing (NLP) and deep learning (DL) to predict the bond strength of fiber-reinforced polymer (FRP) composite bars in ultra-high-performance seawater sea-sand concrete (UHPSSC) using limited experimental data. The framework incorporates an NLP data processor to handle textual variables, a gated transformer to enhance parameter representations, and DL models for regression. Through leveraging the characteristics of seawater sea-sand concrete (SWSSC) and ultra-high-performance concrete (UHPC), it enables effective TL from large FRP–SWSSC/UHPC datasets to smaller FRP–UHPSSC datasets. Three pre-trained models were developed using FRP–SWSSC, FRP–UHPC, and combined datasets, respectively, and then fine-tuned on FRP–UHPSSC data to create three TL models. Compared with traditional machine learning (ML) models such as XGBoost and random forest (RF) trained directly on FRP–UHPSSC data, the proposed TL models achieved significantly higher predictive accuracy. Specifically, the optimal-performing TL model fine-tuned using combined FRP–SWSSC/UHPC data, achieved an R2 of 0.914 and root mean square error (RMSE) of 0.75 on the test set, corresponding to a 13 % increase in R2 and a 47.6 % reduction in RMSE relative to the optimal ML model. Furthermore, NLP-based textual representation improved the TL model's test R2 from 0.876 to 0.914, highlighting the effectiveness in handling tabular data. The TL model also demonstrates semantic recognition capabilities, addressing variations in parameter expressions and dimensionality, enhancing robustness across scenarios. Overall, the proposed NLP-based TL framework effectively integrates heterogeneous material knowledge and substantially enhances predictive performance and generalization, offering a promising approach for data-limited engineering applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信