政策建议的教师-工人大语言模型系统:2025年1月洛杉矶野火空气质量分析案例研究

IF 8.6 Q1 REMOTE SENSING
Kyle Gao , Dening Lu , Liangzhi Li , Nan Chen , Hongjie He , Jing Du , Linlin Xu , Jonathan Li
{"title":"政策建议的教师-工人大语言模型系统:2025年1月洛杉矶野火空气质量分析案例研究","authors":"Kyle Gao ,&nbsp;Dening Lu ,&nbsp;Liangzhi Li ,&nbsp;Nan Chen ,&nbsp;Hongjie He ,&nbsp;Jing Du ,&nbsp;Linlin Xu ,&nbsp;Jonathan Li","doi":"10.1016/j.jag.2025.104774","DOIUrl":null,"url":null,"abstract":"<div><div>The Los Angeles wildfires of January 2025 caused more than 250 billion dollars in damage and lasted for nearly an entire month before containment. Following our previous work, the Digital Twin Building, we modify and leverage the multi-agent Large Language Model (LLM) framework as well as the cloud-mapping integration to study the air quality during the Los Angeles wildfires. Recent advances in large language models have allowed for out-of-the-box automated large-scale data analysis. We use a multi-agent large language system comprised of an Instructor agent and Worker agents. Upon receiving the users’ instructions, the Instructor agent retrieves the data from the cloud platform and produces instruction prompts to the Worker agents. The Worker agents then analyze the data and provide summaries. The summaries are finally input back into the Instructor agent, which then provides the final data analysis. We test this system’s capability for data-based policy recommendation by assessing our Large Language Model System with Instructor–Worker Architecture’s health recommendations and numerical summarizations based on the air quality data during the Los Angeles wildfires.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"143 ","pages":"Article 104774"},"PeriodicalIF":8.6000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Instructor–Worker large language model system for policy recommendation: A case study on air quality analysis of the January 2025 Los Angeles wildfires\",\"authors\":\"Kyle Gao ,&nbsp;Dening Lu ,&nbsp;Liangzhi Li ,&nbsp;Nan Chen ,&nbsp;Hongjie He ,&nbsp;Jing Du ,&nbsp;Linlin Xu ,&nbsp;Jonathan Li\",\"doi\":\"10.1016/j.jag.2025.104774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Los Angeles wildfires of January 2025 caused more than 250 billion dollars in damage and lasted for nearly an entire month before containment. Following our previous work, the Digital Twin Building, we modify and leverage the multi-agent Large Language Model (LLM) framework as well as the cloud-mapping integration to study the air quality during the Los Angeles wildfires. Recent advances in large language models have allowed for out-of-the-box automated large-scale data analysis. We use a multi-agent large language system comprised of an Instructor agent and Worker agents. Upon receiving the users’ instructions, the Instructor agent retrieves the data from the cloud platform and produces instruction prompts to the Worker agents. The Worker agents then analyze the data and provide summaries. The summaries are finally input back into the Instructor agent, which then provides the final data analysis. We test this system’s capability for data-based policy recommendation by assessing our Large Language Model System with Instructor–Worker Architecture’s health recommendations and numerical summarizations based on the air quality data during the Los Angeles wildfires.</div></div>\",\"PeriodicalId\":73423,\"journal\":{\"name\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"volume\":\"143 \",\"pages\":\"Article 104774\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569843225004212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843225004212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

摘要

2025年1月的洛杉矶野火造成了超过2500亿美元的损失,持续了近一个月才得到控制。继我们之前的工作之后,我们修改并利用了多智能体大型语言模型(LLM)框架以及云映射集成来研究洛杉矶野火期间的空气质量。大型语言模型的最新进展使得开箱即用的自动化大规模数据分析成为可能。我们使用了一个由讲师代理和工作者代理组成的多代理大型语言系统。在收到用户的指令后,讲师代理从云平台检索数据,并向Worker代理生成指令提示。然后Worker代理分析数据并提供摘要。最后将摘要输入到Instructor代理中,然后由该代理提供最终的数据分析。我们通过评估我们的大型语言模型系统来测试该系统基于数据的政策建议的能力,该系统具有教师-工作者架构的健康建议和基于洛杉矶野火期间空气质量数据的数值总结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Instructor–Worker large language model system for policy recommendation: A case study on air quality analysis of the January 2025 Los Angeles wildfires
The Los Angeles wildfires of January 2025 caused more than 250 billion dollars in damage and lasted for nearly an entire month before containment. Following our previous work, the Digital Twin Building, we modify and leverage the multi-agent Large Language Model (LLM) framework as well as the cloud-mapping integration to study the air quality during the Los Angeles wildfires. Recent advances in large language models have allowed for out-of-the-box automated large-scale data analysis. We use a multi-agent large language system comprised of an Instructor agent and Worker agents. Upon receiving the users’ instructions, the Instructor agent retrieves the data from the cloud platform and produces instruction prompts to the Worker agents. The Worker agents then analyze the data and provide summaries. The summaries are finally input back into the Instructor agent, which then provides the final data analysis. We test this system’s capability for data-based policy recommendation by assessing our Large Language Model System with Instructor–Worker Architecture’s health recommendations and numerical summarizations based on the air quality data during the Los Angeles wildfires.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International journal of applied earth observation and geoinformation : ITC journal
International journal of applied earth observation and geoinformation : ITC journal Global and Planetary Change, Management, Monitoring, Policy and Law, Earth-Surface Processes, Computers in Earth Sciences
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
77 days
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信