一种多语义提示融合框架,用于会话中情感原因对的提取

IF 6.9 1区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Bo Xie , Junhao Wang , Haixia Guo , Pengliang Chen , Hua Zhang , Bo Jiang , Ye Wang , Liwen Chen
{"title":"一种多语义提示融合框架,用于会话中情感原因对的提取","authors":"Bo Xie ,&nbsp;Junhao Wang ,&nbsp;Haixia Guo ,&nbsp;Pengliang Chen ,&nbsp;Hua Zhang ,&nbsp;Bo Jiang ,&nbsp;Ye Wang ,&nbsp;Liwen Chen","doi":"10.1016/j.ipm.2025.104356","DOIUrl":null,"url":null,"abstract":"<div><div>Emotion-cause pair extraction in conversations (ECPEC) has garnered increasing attention but struggles with modeling multi-turn utterance dependencies. While semantic prompting improves language understanding, its high computational cost hinders widespread ECPEC adoption. To overcome these constraints, we innovatively develop a multi-semantic prompting fusion (MSPF) framework by introducing the pair-oriented sampling strategy, focusing on candidate utterance pairs and transforming the ECPEC task into a pair verification issue. This shift enables us to incorporate three specialized semantic prompts, including tagging, synonym, and causal claim prompts, designed to enrich the semantics of emotion sentiment and emotion-cause relationships. We further present a knowledge attention module for the integration of tagging and synonym prompts, and a two-layer attention pooling module for merging tagging and dual causal claim prompts. Experimental results demonstrate that our proposed MSPF models outperforms the best existing baselines by 4.91 %, 4.08 %, and 2.86 % in F1 score on the ConvECPE, ECPE-D-DD, and ECPE-D-IE (for the domain adaptation experiment) datasets, respectively, with further ablation analysis confirming the effectiveness of our framework.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"63 1","pages":"Article 104356"},"PeriodicalIF":6.9000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MSPF: A multi-semantic prompting fusion framework for emotion-cause pair extraction in conversations\",\"authors\":\"Bo Xie ,&nbsp;Junhao Wang ,&nbsp;Haixia Guo ,&nbsp;Pengliang Chen ,&nbsp;Hua Zhang ,&nbsp;Bo Jiang ,&nbsp;Ye Wang ,&nbsp;Liwen Chen\",\"doi\":\"10.1016/j.ipm.2025.104356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Emotion-cause pair extraction in conversations (ECPEC) has garnered increasing attention but struggles with modeling multi-turn utterance dependencies. While semantic prompting improves language understanding, its high computational cost hinders widespread ECPEC adoption. To overcome these constraints, we innovatively develop a multi-semantic prompting fusion (MSPF) framework by introducing the pair-oriented sampling strategy, focusing on candidate utterance pairs and transforming the ECPEC task into a pair verification issue. This shift enables us to incorporate three specialized semantic prompts, including tagging, synonym, and causal claim prompts, designed to enrich the semantics of emotion sentiment and emotion-cause relationships. We further present a knowledge attention module for the integration of tagging and synonym prompts, and a two-layer attention pooling module for merging tagging and dual causal claim prompts. Experimental results demonstrate that our proposed MSPF models outperforms the best existing baselines by 4.91 %, 4.08 %, and 2.86 % in F1 score on the ConvECPE, ECPE-D-DD, and ECPE-D-IE (for the domain adaptation experiment) datasets, respectively, with further ablation analysis confirming the effectiveness of our framework.</div></div>\",\"PeriodicalId\":50365,\"journal\":{\"name\":\"Information Processing & Management\",\"volume\":\"63 1\",\"pages\":\"Article 104356\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing & Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306457325002973\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457325002973","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

对话中的情感对提取(ECPEC)受到越来越多的关注,但在多回合话语依赖建模方面存在困难。虽然语义提示提高了语言理解能力,但其高昂的计算成本阻碍了ECPEC的广泛采用。为了克服这些限制,我们创新地开发了一个多语义提示融合(MSPF)框架,通过引入面向对的采样策略,重点关注候选话语对,并将ECPEC任务转化为对验证问题。这种转变使我们能够结合三种专门的语义提示,包括标记、同义词和因果主张提示,旨在丰富情感情感和情感-原因关系的语义。我们进一步提出了一个集成标注和同义词提示的知识注意模块,以及一个合并标注和双重因果主张提示的两层注意池模块。实验结果表明,我们提出的MSPF模型在ConvECPE、ECPE-D-DD和ECPE-D-IE(用于域适应实验)数据集上的F1得分分别比现有最佳基线高4.91%、4.08%和2.86%,进一步的消融分析证实了我们框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MSPF: A multi-semantic prompting fusion framework for emotion-cause pair extraction in conversations
Emotion-cause pair extraction in conversations (ECPEC) has garnered increasing attention but struggles with modeling multi-turn utterance dependencies. While semantic prompting improves language understanding, its high computational cost hinders widespread ECPEC adoption. To overcome these constraints, we innovatively develop a multi-semantic prompting fusion (MSPF) framework by introducing the pair-oriented sampling strategy, focusing on candidate utterance pairs and transforming the ECPEC task into a pair verification issue. This shift enables us to incorporate three specialized semantic prompts, including tagging, synonym, and causal claim prompts, designed to enrich the semantics of emotion sentiment and emotion-cause relationships. We further present a knowledge attention module for the integration of tagging and synonym prompts, and a two-layer attention pooling module for merging tagging and dual causal claim prompts. Experimental results demonstrate that our proposed MSPF models outperforms the best existing baselines by 4.91 %, 4.08 %, and 2.86 % in F1 score on the ConvECPE, ECPE-D-DD, and ECPE-D-IE (for the domain adaptation experiment) datasets, respectively, with further ablation analysis confirming the effectiveness of our framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Processing & Management
Information Processing & Management 工程技术-计算机:信息系统
CiteScore
17.00
自引率
11.60%
发文量
276
审稿时长
39 days
期刊介绍: Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing. We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信