类弧连续体可达点上的Nadler-Quinn问题

IF 1.5 1区 数学 Q1 MATHEMATICS
Andrea Ammerlaan , Ana Anušić , Logan C. Hoehn
{"title":"类弧连续体可达点上的Nadler-Quinn问题","authors":"Andrea Ammerlaan ,&nbsp;Ana Anušić ,&nbsp;Logan C. Hoehn","doi":"10.1016/j.aim.2025.110491","DOIUrl":null,"url":null,"abstract":"<div><div>We show that if <em>X</em> is an arc-like continuum, then for every point <span><math><mi>x</mi><mo>∈</mo><mi>X</mi></math></span> there is a plane embedding of <em>X</em> in which <em>x</em> is an accessible point. This answers a question posed by Sam B. Nadler in 1972, which has become known as the Nadler-Quinn problem in continuum theory. Towards this end, we develop the theories of truncations and contour factorizations of interval maps. As a corollary, we answer a question of J.C. Mayer from 1982 about inequivalent plane embeddings of indecomposable arc-like continua.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"480 ","pages":"Article 110491"},"PeriodicalIF":1.5000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Nadler-Quinn problem on accessible points of arc-like continua\",\"authors\":\"Andrea Ammerlaan ,&nbsp;Ana Anušić ,&nbsp;Logan C. Hoehn\",\"doi\":\"10.1016/j.aim.2025.110491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We show that if <em>X</em> is an arc-like continuum, then for every point <span><math><mi>x</mi><mo>∈</mo><mi>X</mi></math></span> there is a plane embedding of <em>X</em> in which <em>x</em> is an accessible point. This answers a question posed by Sam B. Nadler in 1972, which has become known as the Nadler-Quinn problem in continuum theory. Towards this end, we develop the theories of truncations and contour factorizations of interval maps. As a corollary, we answer a question of J.C. Mayer from 1982 about inequivalent plane embeddings of indecomposable arc-like continua.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"480 \",\"pages\":\"Article 110491\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825003895\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825003895","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了如果X是一个类弧连续体,那么对于每个点X∈X,存在X的一个平面嵌入,其中X是一个可达点。这回答了Sam B. Nadler在1972年提出的一个问题,这个问题后来被称为连续统理论中的Nadler- quinn问题。为此,我们发展了区间映射的截断和等高线分解理论。作为推论,我们回答了1982年J.C. Mayer关于不可分解的类弧连续体的不等价平面嵌入的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Nadler-Quinn problem on accessible points of arc-like continua
We show that if X is an arc-like continuum, then for every point xX there is a plane embedding of X in which x is an accessible point. This answers a question posed by Sam B. Nadler in 1972, which has become known as the Nadler-Quinn problem in continuum theory. Towards this end, we develop the theories of truncations and contour factorizations of interval maps. As a corollary, we answer a question of J.C. Mayer from 1982 about inequivalent plane embeddings of indecomposable arc-like continua.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信