{"title":"用于特征选择的二元人工蜂鸟算法","authors":"Ali Hamdipour , Abdolali Basiri , Mostafa Zaare , Seyedali Mirjalili","doi":"10.1016/j.jocs.2025.102686","DOIUrl":null,"url":null,"abstract":"<div><div>Datasets classification accuracy depends on their features. The presence of irrelevant and redundant features in the dataset leads to the reduction of classification accuracy. Identifying and removing such features is the main purpose in feature selection, which is an important step in the data science lifecycle. The objective of the Wrapper feature selection method is to reduce the number of selected feature (NSF) while improving the classification accuracy by working on a set of features. The feature selection is a challenging and computationally expensive problem that falls under the NP-complete category, so it requires computationally cheap and efficient algorithm to solve it. The artificial hummingbird algorithm (AHA) is a biological inspired optimization technique that mimics the unique flight capabilities and intelligent foraging tactics of hummingbirds in nature. Since feature selection is inherently a binary problem. In this paper, the binary form of the AHA meta-heuristic algorithm is proposed to show that binarizing the AHA meta-heuristic algorithm improves its performance for solving feature selection problems. The proposed method is tested on a standard benchmark dataset and compared with four state-of-the-art feature selection algorithms: Automata-based improved equilibrium optimizer with U-shaped transfer function (AIEOU), Whale optimization approaches for wrapper feature selection (WOA-CM), Ring theory-based harmony search (RTHS), and Adaptive switching gray-whale optimizer (ASGW). The results show the effectiveness of the proposed algorithm in searching for optimal features subset. The source code for the algorithm being proposed is accessible to the public on <span><span>https://github.com/alihamdipour/baha</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"92 ","pages":"Article 102686"},"PeriodicalIF":3.7000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BAHA: Binary artificial hummingbird algorithm for feature selection\",\"authors\":\"Ali Hamdipour , Abdolali Basiri , Mostafa Zaare , Seyedali Mirjalili\",\"doi\":\"10.1016/j.jocs.2025.102686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Datasets classification accuracy depends on their features. The presence of irrelevant and redundant features in the dataset leads to the reduction of classification accuracy. Identifying and removing such features is the main purpose in feature selection, which is an important step in the data science lifecycle. The objective of the Wrapper feature selection method is to reduce the number of selected feature (NSF) while improving the classification accuracy by working on a set of features. The feature selection is a challenging and computationally expensive problem that falls under the NP-complete category, so it requires computationally cheap and efficient algorithm to solve it. The artificial hummingbird algorithm (AHA) is a biological inspired optimization technique that mimics the unique flight capabilities and intelligent foraging tactics of hummingbirds in nature. Since feature selection is inherently a binary problem. In this paper, the binary form of the AHA meta-heuristic algorithm is proposed to show that binarizing the AHA meta-heuristic algorithm improves its performance for solving feature selection problems. The proposed method is tested on a standard benchmark dataset and compared with four state-of-the-art feature selection algorithms: Automata-based improved equilibrium optimizer with U-shaped transfer function (AIEOU), Whale optimization approaches for wrapper feature selection (WOA-CM), Ring theory-based harmony search (RTHS), and Adaptive switching gray-whale optimizer (ASGW). The results show the effectiveness of the proposed algorithm in searching for optimal features subset. The source code for the algorithm being proposed is accessible to the public on <span><span>https://github.com/alihamdipour/baha</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":48907,\"journal\":{\"name\":\"Journal of Computational Science\",\"volume\":\"92 \",\"pages\":\"Article 102686\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1877750325001632\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750325001632","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
BAHA: Binary artificial hummingbird algorithm for feature selection
Datasets classification accuracy depends on their features. The presence of irrelevant and redundant features in the dataset leads to the reduction of classification accuracy. Identifying and removing such features is the main purpose in feature selection, which is an important step in the data science lifecycle. The objective of the Wrapper feature selection method is to reduce the number of selected feature (NSF) while improving the classification accuracy by working on a set of features. The feature selection is a challenging and computationally expensive problem that falls under the NP-complete category, so it requires computationally cheap and efficient algorithm to solve it. The artificial hummingbird algorithm (AHA) is a biological inspired optimization technique that mimics the unique flight capabilities and intelligent foraging tactics of hummingbirds in nature. Since feature selection is inherently a binary problem. In this paper, the binary form of the AHA meta-heuristic algorithm is proposed to show that binarizing the AHA meta-heuristic algorithm improves its performance for solving feature selection problems. The proposed method is tested on a standard benchmark dataset and compared with four state-of-the-art feature selection algorithms: Automata-based improved equilibrium optimizer with U-shaped transfer function (AIEOU), Whale optimization approaches for wrapper feature selection (WOA-CM), Ring theory-based harmony search (RTHS), and Adaptive switching gray-whale optimizer (ASGW). The results show the effectiveness of the proposed algorithm in searching for optimal features subset. The source code for the algorithm being proposed is accessible to the public on https://github.com/alihamdipour/baha.
期刊介绍:
Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory.
The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation.
This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods.
Computational science typically unifies three distinct elements:
• Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous);
• Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems;
• Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).