基于区间理论和凸模型理论的混合不确定性负荷重构正则化方法

IF 4.9 2区 工程技术 Q1 ACOUSTICS
Chen Yang , Qinghe Shi , Bochao Lin , Kejun Hu , Fuxian Zhu
{"title":"基于区间理论和凸模型理论的混合不确定性负荷重构正则化方法","authors":"Chen Yang ,&nbsp;Qinghe Shi ,&nbsp;Bochao Lin ,&nbsp;Kejun Hu ,&nbsp;Fuxian Zhu","doi":"10.1016/j.jsv.2025.119389","DOIUrl":null,"url":null,"abstract":"<div><div>Inevitably, load reconstruction involves uncertainties in structural responses and sensor measurements arising from test conditions, material parameters, modelling simplifications, and so on. This paper presents a method using the Green's kernel function (GKFM) to establish a linear time-domain mapping between loads under uncertain circumstances and sensor responses. We develop a regularization framework based on interval analysis and convex modelling to characterize these hybrid uncertainties. Existing non-probabilistic load reconstruction methods typically quantify hybrid uncertainties using a single model (pure interval or pure convex), which may overlook the unique characteristics of different uncertainty sources. This could have an adverse effect on the accuracy of load boundary reconstruction and the robustness of regularization parameter selection. In contrast, this method avoids probabilistic distribution assumptions. By effectively integrating interval analysis and convex modelling, it solves the boundary-value problem for load reconstruction under limited data, refining the upper and lower bounds of the reconstructed load. Crucially, this paper proposes a robust multi-objective regularization parameter optimization strategy to dynamically balance stability and accuracy under the combined influence of hybrid uncertainties. Compared with methods that treat uncertainties homogeneously, this integrated approach provides more compact and reliable estimates. Validation is performed using a space capsule numerical case study.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"619 ","pages":"Article 119389"},"PeriodicalIF":4.9000,"publicationDate":"2025-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularization method for load reconstruction with hybrid uncertainties based on interval theory and convex model theory\",\"authors\":\"Chen Yang ,&nbsp;Qinghe Shi ,&nbsp;Bochao Lin ,&nbsp;Kejun Hu ,&nbsp;Fuxian Zhu\",\"doi\":\"10.1016/j.jsv.2025.119389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Inevitably, load reconstruction involves uncertainties in structural responses and sensor measurements arising from test conditions, material parameters, modelling simplifications, and so on. This paper presents a method using the Green's kernel function (GKFM) to establish a linear time-domain mapping between loads under uncertain circumstances and sensor responses. We develop a regularization framework based on interval analysis and convex modelling to characterize these hybrid uncertainties. Existing non-probabilistic load reconstruction methods typically quantify hybrid uncertainties using a single model (pure interval or pure convex), which may overlook the unique characteristics of different uncertainty sources. This could have an adverse effect on the accuracy of load boundary reconstruction and the robustness of regularization parameter selection. In contrast, this method avoids probabilistic distribution assumptions. By effectively integrating interval analysis and convex modelling, it solves the boundary-value problem for load reconstruction under limited data, refining the upper and lower bounds of the reconstructed load. Crucially, this paper proposes a robust multi-objective regularization parameter optimization strategy to dynamically balance stability and accuracy under the combined influence of hybrid uncertainties. Compared with methods that treat uncertainties homogeneously, this integrated approach provides more compact and reliable estimates. Validation is performed using a space capsule numerical case study.</div></div>\",\"PeriodicalId\":17233,\"journal\":{\"name\":\"Journal of Sound and Vibration\",\"volume\":\"619 \",\"pages\":\"Article 119389\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sound and Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022460X25004626\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sound and Vibration","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022460X25004626","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

不可避免地,载荷重构涉及结构响应和传感器测量的不确定性,这些不确定性来自测试条件、材料参数、建模简化等。本文提出了一种利用格林核函数(GKFM)建立不确定情况下负载与传感器响应之间的线性时域映射的方法。我们开发了一个基于区间分析和凸建模的正则化框架来表征这些混合不确定性。现有的非概率负荷重建方法通常使用单一模型(纯区间或纯凸)来量化混合不确定性,而忽略了不同不确定性源的独特性。这可能会对载荷边界重建的准确性和正则化参数选择的鲁棒性产生不利影响。相反,该方法避免了概率分布假设。通过有效地将区间分析与凸建模相结合,解决了有限数据下负荷重构的边值问题,细化了重构负荷的上下界。本文提出了一种鲁棒多目标正则化参数优化策略,在混合不确定性综合影响下动态平衡系统的稳定性和精度。与同质处理不确定性的方法相比,这种综合方法提供了更紧凑和可靠的估计。利用一个太空舱的数值案例进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularization method for load reconstruction with hybrid uncertainties based on interval theory and convex model theory
Inevitably, load reconstruction involves uncertainties in structural responses and sensor measurements arising from test conditions, material parameters, modelling simplifications, and so on. This paper presents a method using the Green's kernel function (GKFM) to establish a linear time-domain mapping between loads under uncertain circumstances and sensor responses. We develop a regularization framework based on interval analysis and convex modelling to characterize these hybrid uncertainties. Existing non-probabilistic load reconstruction methods typically quantify hybrid uncertainties using a single model (pure interval or pure convex), which may overlook the unique characteristics of different uncertainty sources. This could have an adverse effect on the accuracy of load boundary reconstruction and the robustness of regularization parameter selection. In contrast, this method avoids probabilistic distribution assumptions. By effectively integrating interval analysis and convex modelling, it solves the boundary-value problem for load reconstruction under limited data, refining the upper and lower bounds of the reconstructed load. Crucially, this paper proposes a robust multi-objective regularization parameter optimization strategy to dynamically balance stability and accuracy under the combined influence of hybrid uncertainties. Compared with methods that treat uncertainties homogeneously, this integrated approach provides more compact and reliable estimates. Validation is performed using a space capsule numerical case study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Sound and Vibration
Journal of Sound and Vibration 工程技术-工程:机械
CiteScore
9.10
自引率
10.60%
发文量
551
审稿时长
69 days
期刊介绍: The Journal of Sound and Vibration (JSV) is an independent journal devoted to the prompt publication of original papers, both theoretical and experimental, that provide new information on any aspect of sound or vibration. There is an emphasis on fundamental work that has potential for practical application. JSV was founded and operates on the premise that the subject of sound and vibration requires a journal that publishes papers of a high technical standard across the various subdisciplines, thus facilitating awareness of techniques and discoveries in one area that may be applicable in others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信