带碰撞的调谐质量阻尼器控制斜拉索涡激振动的研究

IF 4.9 2区 工程技术 Q1 ACOUSTICS
Shujin Li , Ruibo Wang , Yuan Zhao , Wenlong Zeng , Jean Paul Irakoze
{"title":"带碰撞的调谐质量阻尼器控制斜拉索涡激振动的研究","authors":"Shujin Li ,&nbsp;Ruibo Wang ,&nbsp;Yuan Zhao ,&nbsp;Wenlong Zeng ,&nbsp;Jean Paul Irakoze","doi":"10.1016/j.jsv.2025.119392","DOIUrl":null,"url":null,"abstract":"<div><div>A novel pounding tuned mass damper-inerter (PTMDI) is proposed to control the vortex-induced vibration (VIV) of stay cables. This device incorporates a nonlinear impact mechanism consisting of the viscoelastic material impact boundary into the conventional tuned mass-damper-inerter (TMDI). It enhances the mass amplification effect of the inerter through acceleration mutation during the collisions, while simultaneously reducing the device’s size. The PTMDI solves the installation limitation of traditional inerter mass dampers, which require connection at one end, making the arrangement more flexible. The motion equation of the stay cable-PTMDI system under VIV is established, and vibration characteristics and dynamic responses of the cable are systematically analyzed. The effectiveness of the collision mechanism and dynamic responses results in this paper are verified through experimental tests and numerical simulations. To improve the PTMDI’s damping effect, the influence and optimization of the inertial coefficient and collision parameters are explored, and a method for obtaining the optimal parameters is given. Example analysis shows that the proposed unoptimized PTMDI can significantly reduce the single-mode VIV responses, but its effectiveness is limited for multi-mode VIV. The optimized PTMDI configuration is more effective than the conventional damper for both single-mode and multi-mode VIV, with the impact mechanism also enhancing system robustness.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"619 ","pages":"Article 119392"},"PeriodicalIF":4.9000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the control of vortex-induced vibration of stay cable by tuned mass damper-inerter with collisions\",\"authors\":\"Shujin Li ,&nbsp;Ruibo Wang ,&nbsp;Yuan Zhao ,&nbsp;Wenlong Zeng ,&nbsp;Jean Paul Irakoze\",\"doi\":\"10.1016/j.jsv.2025.119392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A novel pounding tuned mass damper-inerter (PTMDI) is proposed to control the vortex-induced vibration (VIV) of stay cables. This device incorporates a nonlinear impact mechanism consisting of the viscoelastic material impact boundary into the conventional tuned mass-damper-inerter (TMDI). It enhances the mass amplification effect of the inerter through acceleration mutation during the collisions, while simultaneously reducing the device’s size. The PTMDI solves the installation limitation of traditional inerter mass dampers, which require connection at one end, making the arrangement more flexible. The motion equation of the stay cable-PTMDI system under VIV is established, and vibration characteristics and dynamic responses of the cable are systematically analyzed. The effectiveness of the collision mechanism and dynamic responses results in this paper are verified through experimental tests and numerical simulations. To improve the PTMDI’s damping effect, the influence and optimization of the inertial coefficient and collision parameters are explored, and a method for obtaining the optimal parameters is given. Example analysis shows that the proposed unoptimized PTMDI can significantly reduce the single-mode VIV responses, but its effectiveness is limited for multi-mode VIV. The optimized PTMDI configuration is more effective than the conventional damper for both single-mode and multi-mode VIV, with the impact mechanism also enhancing system robustness.</div></div>\",\"PeriodicalId\":17233,\"journal\":{\"name\":\"Journal of Sound and Vibration\",\"volume\":\"619 \",\"pages\":\"Article 119392\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sound and Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022460X25004651\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sound and Vibration","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022460X25004651","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种控制斜拉索涡激振动的新型冲击调谐质量阻尼器(PTMDI)。该装置在传统的调谐质量阻尼器(TMDI)中加入了由粘弹性材料冲击边界组成的非线性冲击机构。通过碰撞过程中的加速度突变增强了干涉器的质量放大效果,同时减小了器件的尺寸。PTMDI解决了传统质量阻尼器需要一端连接的安装限制,使其布置更加灵活。建立了斜拉索- ptmdi系统在振动作用下的运动方程,系统分析了斜拉索的振动特性和动力响应。通过实验试验和数值模拟,验证了本文碰撞机理和动力响应结果的有效性。为了提高PTMDI的阻尼效果,探讨了惯性系数和碰撞参数对阻尼效果的影响及优化,给出了最优参数的求解方法。算例分析表明,所提出的未优化PTMDI可以显著降低单模振动响应,但对于多模振动响应效果有限。优化后的PTMDI结构对单模态和多模态涡激振动都比传统的阻尼器更有效,且冲击机理也增强了系统的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on the control of vortex-induced vibration of stay cable by tuned mass damper-inerter with collisions
A novel pounding tuned mass damper-inerter (PTMDI) is proposed to control the vortex-induced vibration (VIV) of stay cables. This device incorporates a nonlinear impact mechanism consisting of the viscoelastic material impact boundary into the conventional tuned mass-damper-inerter (TMDI). It enhances the mass amplification effect of the inerter through acceleration mutation during the collisions, while simultaneously reducing the device’s size. The PTMDI solves the installation limitation of traditional inerter mass dampers, which require connection at one end, making the arrangement more flexible. The motion equation of the stay cable-PTMDI system under VIV is established, and vibration characteristics and dynamic responses of the cable are systematically analyzed. The effectiveness of the collision mechanism and dynamic responses results in this paper are verified through experimental tests and numerical simulations. To improve the PTMDI’s damping effect, the influence and optimization of the inertial coefficient and collision parameters are explored, and a method for obtaining the optimal parameters is given. Example analysis shows that the proposed unoptimized PTMDI can significantly reduce the single-mode VIV responses, but its effectiveness is limited for multi-mode VIV. The optimized PTMDI configuration is more effective than the conventional damper for both single-mode and multi-mode VIV, with the impact mechanism also enhancing system robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Sound and Vibration
Journal of Sound and Vibration 工程技术-工程:机械
CiteScore
9.10
自引率
10.60%
发文量
551
审稿时长
69 days
期刊介绍: The Journal of Sound and Vibration (JSV) is an independent journal devoted to the prompt publication of original papers, both theoretical and experimental, that provide new information on any aspect of sound or vibration. There is an emphasis on fundamental work that has potential for practical application. JSV was founded and operates on the premise that the subject of sound and vibration requires a journal that publishes papers of a high technical standard across the various subdisciplines, thus facilitating awareness of techniques and discoveries in one area that may be applicable in others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信