Janus MoSi2Z3X (Z/X = N, P, As)单层膜的结构、电子、压电和光学性质

IF 3.9 Q3 PHYSICS, CONDENSED MATTER
Rui Huang , Yanzong Wang , Qinfang Zhang
{"title":"Janus MoSi2Z3X (Z/X = N, P, As)单层膜的结构、电子、压电和光学性质","authors":"Rui Huang ,&nbsp;Yanzong Wang ,&nbsp;Qinfang Zhang","doi":"10.1016/j.cocom.2025.e01109","DOIUrl":null,"url":null,"abstract":"<div><div>Janus structural engineering of two‐dimensional (2D) materials has emerged as a pivotal strategy for modulating their physicochemical properties. In this work, we designed new Janus MoSi<sub>2</sub>Z<sub>3</sub>X (Z/X = N, P, As) monolayers and systematically investigated their structural, electronic, carrier mobility, piezoelectric, and optical properties by first‐principles calculations. The results demonstrate that MoSi<sub>2</sub>P<sub>3</sub>N, MoSi<sub>2</sub>P<sub>3</sub>As, and MoSi<sub>2</sub>As<sub>3</sub>P monolayers exhibit robust dynamical, thermodynamic, and mechanical stability. The band structure reveals that MoSi<sub>2</sub>P<sub>3</sub>N (MoSi<sub>2</sub>P<sub>3</sub>As) is an indirect bandgap semiconductor with its valence band maximum (VBM) at the K (Γ) point and conduction band minimum (CBM) at the M (K) point, whereas MoSi<sub>2</sub>As<sub>3</sub>P is a direct bandgap semiconductor with both VBM and CBM located at the K point. Besides, biaxial strain engineering enables the phase transition from semiconductor-to-metal accompanied with an indirect‐to-direct bandgap transition in MoSi<sub>2</sub>P<sub>3</sub>N and a direct‐to-indirect transition in MoSi<sub>2</sub>As<sub>3</sub>P. Furthermore, these monolayers demonstrate anisotropic and high carrier mobility, especially the hole mobility of MoSi<sub>2</sub>P<sub>3</sub>N approaching 10<sup>3</sup> cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup>. Specially, MoSi<sub>2</sub>P<sub>3</sub>N, MoSi<sub>2</sub>P<sub>3</sub>As, and MoSi<sub>2</sub>As<sub>3</sub>P monolayers exhibit excellent piezoelectric performance, especially, the piezoelectric strain coefficients <em>d</em><sub>11</sub> and <em>d</em><sub>31</sub> of MoSi<sub>2</sub>P<sub>3</sub>N are 6.61 and 0.12 pm/V, respectively. Furthermore, they display high optical absorption across both visible and ultraviolet spectral regions. These findings highlight the potential applications of Janus MoSi<sub>2</sub>Z<sub>3</sub>X monolayers in piezoelectric and photoelectric devices.</div></div>","PeriodicalId":46322,"journal":{"name":"Computational Condensed Matter","volume":"44 ","pages":"Article e01109"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural, electronic, piezoelectric, and optical properties of Janus MoSi2Z3X (Z/X = N, P, As) monolayers\",\"authors\":\"Rui Huang ,&nbsp;Yanzong Wang ,&nbsp;Qinfang Zhang\",\"doi\":\"10.1016/j.cocom.2025.e01109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Janus structural engineering of two‐dimensional (2D) materials has emerged as a pivotal strategy for modulating their physicochemical properties. In this work, we designed new Janus MoSi<sub>2</sub>Z<sub>3</sub>X (Z/X = N, P, As) monolayers and systematically investigated their structural, electronic, carrier mobility, piezoelectric, and optical properties by first‐principles calculations. The results demonstrate that MoSi<sub>2</sub>P<sub>3</sub>N, MoSi<sub>2</sub>P<sub>3</sub>As, and MoSi<sub>2</sub>As<sub>3</sub>P monolayers exhibit robust dynamical, thermodynamic, and mechanical stability. The band structure reveals that MoSi<sub>2</sub>P<sub>3</sub>N (MoSi<sub>2</sub>P<sub>3</sub>As) is an indirect bandgap semiconductor with its valence band maximum (VBM) at the K (Γ) point and conduction band minimum (CBM) at the M (K) point, whereas MoSi<sub>2</sub>As<sub>3</sub>P is a direct bandgap semiconductor with both VBM and CBM located at the K point. Besides, biaxial strain engineering enables the phase transition from semiconductor-to-metal accompanied with an indirect‐to-direct bandgap transition in MoSi<sub>2</sub>P<sub>3</sub>N and a direct‐to-indirect transition in MoSi<sub>2</sub>As<sub>3</sub>P. Furthermore, these monolayers demonstrate anisotropic and high carrier mobility, especially the hole mobility of MoSi<sub>2</sub>P<sub>3</sub>N approaching 10<sup>3</sup> cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup>. Specially, MoSi<sub>2</sub>P<sub>3</sub>N, MoSi<sub>2</sub>P<sub>3</sub>As, and MoSi<sub>2</sub>As<sub>3</sub>P monolayers exhibit excellent piezoelectric performance, especially, the piezoelectric strain coefficients <em>d</em><sub>11</sub> and <em>d</em><sub>31</sub> of MoSi<sub>2</sub>P<sub>3</sub>N are 6.61 and 0.12 pm/V, respectively. Furthermore, they display high optical absorption across both visible and ultraviolet spectral regions. These findings highlight the potential applications of Janus MoSi<sub>2</sub>Z<sub>3</sub>X monolayers in piezoelectric and photoelectric devices.</div></div>\",\"PeriodicalId\":46322,\"journal\":{\"name\":\"Computational Condensed Matter\",\"volume\":\"44 \",\"pages\":\"Article e01109\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Condensed Matter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352214325001091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352214325001091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

二维(2D)材料的Janus结构工程已成为调节其物理化学性质的关键策略。在这项工作中,我们设计了新的Janus MoSi2Z3X (Z/X = N, P, As)单层膜,并通过第一性原理计算系统地研究了它们的结构,电子,载流子迁移率,压电和光学性质。结果表明,MoSi2P3N、MoSi2P3As和MoSi2As3P单层膜具有良好的动力学、热力学和机械稳定性。带结构表明,MoSi2P3N (MoSi2P3As)为间接带隙半导体,价带最大值(VBM)在K (Γ)点,导带最小值(CBM)在M (K)点,而MoSi2As3P为直接带隙半导体,VBM和CBM均位于K点。此外,双轴应变工程使MoSi2P3N从半导体到金属的相变伴随着间接到直接的带隙转变和MoSi2As3P的直接到间接转变。此外,这些单层具有各向异性和高载流子迁移率,特别是MoSi2P3N的空穴迁移率接近103 cm2 V−1 s−1。其中,MoSi2P3N、MoSi2P3As和MoSi2As3P单层具有优异的压电性能,其中MoSi2P3N的压电应变系数d11和d31分别为6.61和0.12 pm/V。此外,它们在可见光和紫外光谱区域都显示出很高的光吸收。这些发现突出了Janus MoSi2Z3X单层膜在压电和光电器件中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural, electronic, piezoelectric, and optical properties of Janus MoSi2Z3X (Z/X = N, P, As) monolayers
Janus structural engineering of two‐dimensional (2D) materials has emerged as a pivotal strategy for modulating their physicochemical properties. In this work, we designed new Janus MoSi2Z3X (Z/X = N, P, As) monolayers and systematically investigated their structural, electronic, carrier mobility, piezoelectric, and optical properties by first‐principles calculations. The results demonstrate that MoSi2P3N, MoSi2P3As, and MoSi2As3P monolayers exhibit robust dynamical, thermodynamic, and mechanical stability. The band structure reveals that MoSi2P3N (MoSi2P3As) is an indirect bandgap semiconductor with its valence band maximum (VBM) at the K (Γ) point and conduction band minimum (CBM) at the M (K) point, whereas MoSi2As3P is a direct bandgap semiconductor with both VBM and CBM located at the K point. Besides, biaxial strain engineering enables the phase transition from semiconductor-to-metal accompanied with an indirect‐to-direct bandgap transition in MoSi2P3N and a direct‐to-indirect transition in MoSi2As3P. Furthermore, these monolayers demonstrate anisotropic and high carrier mobility, especially the hole mobility of MoSi2P3N approaching 103 cm2 V−1 s−1. Specially, MoSi2P3N, MoSi2P3As, and MoSi2As3P monolayers exhibit excellent piezoelectric performance, especially, the piezoelectric strain coefficients d11 and d31 of MoSi2P3N are 6.61 and 0.12 pm/V, respectively. Furthermore, they display high optical absorption across both visible and ultraviolet spectral regions. These findings highlight the potential applications of Janus MoSi2Z3X monolayers in piezoelectric and photoelectric devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Condensed Matter
Computational Condensed Matter PHYSICS, CONDENSED MATTER-
CiteScore
3.70
自引率
9.50%
发文量
134
审稿时长
39 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信