{"title":"CFTR中折叠修正子与第一个二聚核苷酸结合结构域的热力学耦合","authors":"Guangyu Wang*, ","doi":"10.1021/acsbiomedchemau.5c00014","DOIUrl":null,"url":null,"abstract":"<p >The most common cystic fibrosis mutation is the F508del mutation in the human cystic fibrosis transmembrane conductance regulator (hCFTR), which causes misfolding of the first of two nucleotide binding domains (NBD1/2), preventing Mg/ATP-dependent NBD dimerization for normal function. Although folding correctors elexacaftor/VX-445 and lumacaftor/VX-809 have been combined to correct the NBD1 misfolding, the exact correction pathway is still unknown. In this study, the constrained tertiary noncovalent interaction networks or the thermoring structures of dimerized NBD1 in hCFTR/E1371Q with or without F508del were analyzed to identify the weakest noncovalent bridge as the final post-translational tertiary folding of dimerized NBD1 in response to folding correctors. These computational analyses suggested that hCFTR primarily used cooperative folding between α- and β-subdomains in dimerized NBD1 as the last step upon binding of the potentiator ivacaftor/VX-770. However, the binding of folding correctors allosterically protected the α-subdomain from misfolding until subsequent core formation. This thermodynamic protective mechanism, unlike the chaperone-based one in cotranslational NBD1 folding, may restore posttranslational NBD1 folding for tight Mg/ATP-mediated NBD dimerization in the F508del mutation and also potentially apply to treating other cystic fibrosis patients with rare mutations.</p>","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"5 4","pages":"593–601"},"PeriodicalIF":4.3000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsbiomedchemau.5c00014","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic Coupling between Folding Correctors and the First of Dimerized Nucleotide Binding Domains in CFTR\",\"authors\":\"Guangyu Wang*, \",\"doi\":\"10.1021/acsbiomedchemau.5c00014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The most common cystic fibrosis mutation is the F508del mutation in the human cystic fibrosis transmembrane conductance regulator (hCFTR), which causes misfolding of the first of two nucleotide binding domains (NBD1/2), preventing Mg/ATP-dependent NBD dimerization for normal function. Although folding correctors elexacaftor/VX-445 and lumacaftor/VX-809 have been combined to correct the NBD1 misfolding, the exact correction pathway is still unknown. In this study, the constrained tertiary noncovalent interaction networks or the thermoring structures of dimerized NBD1 in hCFTR/E1371Q with or without F508del were analyzed to identify the weakest noncovalent bridge as the final post-translational tertiary folding of dimerized NBD1 in response to folding correctors. These computational analyses suggested that hCFTR primarily used cooperative folding between α- and β-subdomains in dimerized NBD1 as the last step upon binding of the potentiator ivacaftor/VX-770. However, the binding of folding correctors allosterically protected the α-subdomain from misfolding until subsequent core formation. This thermodynamic protective mechanism, unlike the chaperone-based one in cotranslational NBD1 folding, may restore posttranslational NBD1 folding for tight Mg/ATP-mediated NBD dimerization in the F508del mutation and also potentially apply to treating other cystic fibrosis patients with rare mutations.</p>\",\"PeriodicalId\":29802,\"journal\":{\"name\":\"ACS Bio & Med Chem Au\",\"volume\":\"5 4\",\"pages\":\"593–601\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsbiomedchemau.5c00014\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Bio & Med Chem Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsbiomedchemau.5c00014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Bio & Med Chem Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomedchemau.5c00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Thermodynamic Coupling between Folding Correctors and the First of Dimerized Nucleotide Binding Domains in CFTR
The most common cystic fibrosis mutation is the F508del mutation in the human cystic fibrosis transmembrane conductance regulator (hCFTR), which causes misfolding of the first of two nucleotide binding domains (NBD1/2), preventing Mg/ATP-dependent NBD dimerization for normal function. Although folding correctors elexacaftor/VX-445 and lumacaftor/VX-809 have been combined to correct the NBD1 misfolding, the exact correction pathway is still unknown. In this study, the constrained tertiary noncovalent interaction networks or the thermoring structures of dimerized NBD1 in hCFTR/E1371Q with or without F508del were analyzed to identify the weakest noncovalent bridge as the final post-translational tertiary folding of dimerized NBD1 in response to folding correctors. These computational analyses suggested that hCFTR primarily used cooperative folding between α- and β-subdomains in dimerized NBD1 as the last step upon binding of the potentiator ivacaftor/VX-770. However, the binding of folding correctors allosterically protected the α-subdomain from misfolding until subsequent core formation. This thermodynamic protective mechanism, unlike the chaperone-based one in cotranslational NBD1 folding, may restore posttranslational NBD1 folding for tight Mg/ATP-mediated NBD dimerization in the F508del mutation and also potentially apply to treating other cystic fibrosis patients with rare mutations.
期刊介绍:
ACS Bio & Med Chem Au is a broad scope open access journal which publishes short letters comprehensive articles reviews and perspectives in all aspects of biological and medicinal chemistry. Studies providing fundamental insights or describing novel syntheses as well as clinical or other applications-based work are welcomed.This broad scope includes experimental and theoretical studies on the chemical physical mechanistic and/or structural basis of biological or cell function in all domains of life. It encompasses the fields of chemical biology synthetic biology disease biology cell biology agriculture and food natural products research nucleic acid biology neuroscience structural biology and biophysics.The journal publishes studies that pertain to a broad range of medicinal chemistry including compound design and optimization biological evaluation molecular mechanistic understanding of drug delivery and drug delivery systems imaging agents and pharmacology and translational science of both small and large bioactive molecules. Novel computational cheminformatics and structural studies for the identification (or structure-activity relationship analysis) of bioactive molecules ligands and their targets are also welcome. The journal will consider computational studies applying established computational methods but only in combination with novel and original experimental data (e.g. in cases where new compounds have been designed and tested).Also included in the scope of the journal are articles relating to infectious diseases research on pathogens host-pathogen interactions therapeutics diagnostics vaccines drug-delivery systems and other biomedical technology development pertaining to infectious diseases.