综合空间转录组和代谢研究揭示了人类膀胱癌的代谢异质性。

IF 5 3区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yu Lu, Fangdie Ye, Xuedan Han, Zihan Wang, Xiaoman Li, Lufeng Zheng
{"title":"综合空间转录组和代谢研究揭示了人类膀胱癌的代谢异质性。","authors":"Yu Lu, Fangdie Ye, Xuedan Han, Zihan Wang, Xiaoman Li, Lufeng Zheng","doi":"10.1038/s41417-025-00947-z","DOIUrl":null,"url":null,"abstract":"<p><p>Bladder cancer (BC) is a malignancy that originates from the cells lining the bladder and is one of the most common cancers of the urinary system, capable of occurring in any part of the bladder. However, the molecular mechanisms underlying the malignant transformation of BC have not been systematically studied. This study integrated cutting-edge techniques of spatial transcriptomics (ST) and spatial metabolomics (SM) to capture the transcriptomic and metabolomic landscapes of both BC and adjacent normal tissues. ST results revealed a significant upregulation of genes associated with choline metabolism and glucose metabolism, while genes related to sphingolipid metabolism and tryptophan metabolism were significantly downregulated. Additionally, significant metabolic reprogramming was observed in BC tissues, including the upregulation of choline metabolism and glucose metabolism, as well as the downregulation of sphingolipid metabolism and tryptophan metabolism. These alterations may play a crucial role in promoting tumorigenesis and immune evasion of BC. The interpretation of ST and SM data in this study offers new insights into the molecular mechanisms underlying BC progression and provides valuable clues for the prevention and treatment of BC. Schematic illustration of BC metabolic reprogramming.</p>","PeriodicalId":9577,"journal":{"name":"Cancer gene therapy","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated spatial transcriptome and metabolism study reveals metabolic heterogeneity in human bladder cancer.\",\"authors\":\"Yu Lu, Fangdie Ye, Xuedan Han, Zihan Wang, Xiaoman Li, Lufeng Zheng\",\"doi\":\"10.1038/s41417-025-00947-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bladder cancer (BC) is a malignancy that originates from the cells lining the bladder and is one of the most common cancers of the urinary system, capable of occurring in any part of the bladder. However, the molecular mechanisms underlying the malignant transformation of BC have not been systematically studied. This study integrated cutting-edge techniques of spatial transcriptomics (ST) and spatial metabolomics (SM) to capture the transcriptomic and metabolomic landscapes of both BC and adjacent normal tissues. ST results revealed a significant upregulation of genes associated with choline metabolism and glucose metabolism, while genes related to sphingolipid metabolism and tryptophan metabolism were significantly downregulated. Additionally, significant metabolic reprogramming was observed in BC tissues, including the upregulation of choline metabolism and glucose metabolism, as well as the downregulation of sphingolipid metabolism and tryptophan metabolism. These alterations may play a crucial role in promoting tumorigenesis and immune evasion of BC. The interpretation of ST and SM data in this study offers new insights into the molecular mechanisms underlying BC progression and provides valuable clues for the prevention and treatment of BC. Schematic illustration of BC metabolic reprogramming.</p>\",\"PeriodicalId\":9577,\"journal\":{\"name\":\"Cancer gene therapy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer gene therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41417-025-00947-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41417-025-00947-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

膀胱癌(BC)是一种起源于膀胱内壁细胞的恶性肿瘤,是泌尿系统最常见的癌症之一,可发生在膀胱的任何部位。然而,BC恶性转化的分子机制尚未得到系统的研究。该研究整合了空间转录组学(ST)和空间代谢组学(SM)的前沿技术,以捕捉BC和邻近正常组织的转录组学和代谢组学景观。ST结果显示,与胆碱代谢和葡萄糖代谢相关的基因显著上调,而与鞘脂代谢和色氨酸代谢相关的基因显著下调。此外,在BC组织中观察到显著的代谢重编程,包括胆碱代谢和葡萄糖代谢上调,鞘脂代谢和色氨酸代谢下调。这些改变可能在促进BC的肿瘤发生和免疫逃避中起关键作用。本研究对ST和SM数据的解释为BC进展的分子机制提供了新的见解,并为BC的预防和治疗提供了有价值的线索。BC代谢重编程示意图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated spatial transcriptome and metabolism study reveals metabolic heterogeneity in human bladder cancer.

Bladder cancer (BC) is a malignancy that originates from the cells lining the bladder and is one of the most common cancers of the urinary system, capable of occurring in any part of the bladder. However, the molecular mechanisms underlying the malignant transformation of BC have not been systematically studied. This study integrated cutting-edge techniques of spatial transcriptomics (ST) and spatial metabolomics (SM) to capture the transcriptomic and metabolomic landscapes of both BC and adjacent normal tissues. ST results revealed a significant upregulation of genes associated with choline metabolism and glucose metabolism, while genes related to sphingolipid metabolism and tryptophan metabolism were significantly downregulated. Additionally, significant metabolic reprogramming was observed in BC tissues, including the upregulation of choline metabolism and glucose metabolism, as well as the downregulation of sphingolipid metabolism and tryptophan metabolism. These alterations may play a crucial role in promoting tumorigenesis and immune evasion of BC. The interpretation of ST and SM data in this study offers new insights into the molecular mechanisms underlying BC progression and provides valuable clues for the prevention and treatment of BC. Schematic illustration of BC metabolic reprogramming.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer gene therapy
Cancer gene therapy 医学-生物工程与应用微生物
CiteScore
10.20
自引率
0.00%
发文量
150
审稿时长
4-8 weeks
期刊介绍: Cancer Gene Therapy is the essential gene and cellular therapy resource for cancer researchers and clinicians, keeping readers up to date with the latest developments in gene and cellular therapies for cancer. The journal publishes original laboratory and clinical research papers, case reports and review articles. Publication topics include RNAi approaches, drug resistance, hematopoietic progenitor cell gene transfer, cancer stem cells, cellular therapies, homologous recombination, ribozyme technology, antisense technology, tumor immunotherapy and tumor suppressors, translational research, cancer therapy, gene delivery systems (viral and non-viral), anti-gene therapy (antisense, siRNA & ribozymes), apoptosis; mechanisms and therapies, vaccine development, immunology and immunotherapy, DNA synthesis and repair. Cancer Gene Therapy publishes the results of laboratory investigations, preclinical studies, and clinical trials in the field of gene transfer/gene therapy and cellular therapies as applied to cancer research. Types of articles published include original research articles; case reports; brief communications; review articles in the main fields of drug resistance/sensitivity, gene therapy, cellular therapy, tumor suppressor and anti-oncogene therapy, cytokine/tumor immunotherapy, etc.; industry perspectives; and letters to the editor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信