Caisheng Liao, Yuki Todo, Jiashu Zhang, Zheng Tang
{"title":"GlaucoDiff:生成平衡的青光眼眼底图像和提高诊断性能的框架","authors":"Caisheng Liao, Yuki Todo, Jiashu Zhang, Zheng Tang","doi":"10.1002/ima.70185","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Glaucoma is a leading cause of irreversible blindness, and early diagnosis is critical. While retinal fundus images are commonly used for screening, AI-based diagnostic models face challenges such as data scarcity, class imbalance, and limited image diversity. To address this, we introduce GlaucoDiff, a diffusion-based image synthesis framework designed to generate clinically meaningful glaucoma fundus images. It employs a two-stage training strategy and integrates a multimodal large language model as an automated quality filter to ensure clinical relevance. Experiments on the JustRAIGS dataset show that GlaucoDiff outperforms commercial generators such as DALL-E 3 and Keling, achieving better image quality and diversity (FID: 109.8; SWD: 222.2). When synthetic images were used to augment the training set of a vision transformer classifier, sensitivity improved consistently from 0.8182 with only real data to 0.8615 with 10% synthetic images, and further to 0.8788 with 50%. However, as the proportion of synthetic data increased, other important metrics such as specificity, accuracy, and AUC began to decline compared to the results with 10% synthetic data. This finding suggests that although more synthetic images can enhance the model's ability to detect positive cases, too much synthetic data may reduce overall classification performance. These results demonstrate the practical value of GlaucoDiff in alleviating data imbalance and improving diagnostic accuracy for AI-assisted glaucoma screening.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"35 5","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GlaucoDiff: A Framework for Generating Balanced Glaucoma Fundus Images and Improving Diagnostic Performance\",\"authors\":\"Caisheng Liao, Yuki Todo, Jiashu Zhang, Zheng Tang\",\"doi\":\"10.1002/ima.70185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Glaucoma is a leading cause of irreversible blindness, and early diagnosis is critical. While retinal fundus images are commonly used for screening, AI-based diagnostic models face challenges such as data scarcity, class imbalance, and limited image diversity. To address this, we introduce GlaucoDiff, a diffusion-based image synthesis framework designed to generate clinically meaningful glaucoma fundus images. It employs a two-stage training strategy and integrates a multimodal large language model as an automated quality filter to ensure clinical relevance. Experiments on the JustRAIGS dataset show that GlaucoDiff outperforms commercial generators such as DALL-E 3 and Keling, achieving better image quality and diversity (FID: 109.8; SWD: 222.2). When synthetic images were used to augment the training set of a vision transformer classifier, sensitivity improved consistently from 0.8182 with only real data to 0.8615 with 10% synthetic images, and further to 0.8788 with 50%. However, as the proportion of synthetic data increased, other important metrics such as specificity, accuracy, and AUC began to decline compared to the results with 10% synthetic data. This finding suggests that although more synthetic images can enhance the model's ability to detect positive cases, too much synthetic data may reduce overall classification performance. These results demonstrate the practical value of GlaucoDiff in alleviating data imbalance and improving diagnostic accuracy for AI-assisted glaucoma screening.</p>\\n </div>\",\"PeriodicalId\":14027,\"journal\":{\"name\":\"International Journal of Imaging Systems and Technology\",\"volume\":\"35 5\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Imaging Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ima.70185\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.70185","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
GlaucoDiff: A Framework for Generating Balanced Glaucoma Fundus Images and Improving Diagnostic Performance
Glaucoma is a leading cause of irreversible blindness, and early diagnosis is critical. While retinal fundus images are commonly used for screening, AI-based diagnostic models face challenges such as data scarcity, class imbalance, and limited image diversity. To address this, we introduce GlaucoDiff, a diffusion-based image synthesis framework designed to generate clinically meaningful glaucoma fundus images. It employs a two-stage training strategy and integrates a multimodal large language model as an automated quality filter to ensure clinical relevance. Experiments on the JustRAIGS dataset show that GlaucoDiff outperforms commercial generators such as DALL-E 3 and Keling, achieving better image quality and diversity (FID: 109.8; SWD: 222.2). When synthetic images were used to augment the training set of a vision transformer classifier, sensitivity improved consistently from 0.8182 with only real data to 0.8615 with 10% synthetic images, and further to 0.8788 with 50%. However, as the proportion of synthetic data increased, other important metrics such as specificity, accuracy, and AUC began to decline compared to the results with 10% synthetic data. This finding suggests that although more synthetic images can enhance the model's ability to detect positive cases, too much synthetic data may reduce overall classification performance. These results demonstrate the practical value of GlaucoDiff in alleviating data imbalance and improving diagnostic accuracy for AI-assisted glaucoma screening.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.