基于AnyLogic的三线地铁换乘站应急疏散路径仿真研究

IF 2.5 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Kai Wang, Quanfang Li, Jun Deng, Chang Su, Yuanyuan Feng
{"title":"基于AnyLogic的三线地铁换乘站应急疏散路径仿真研究","authors":"Kai Wang,&nbsp;Quanfang Li,&nbsp;Jun Deng,&nbsp;Chang Su,&nbsp;Yuanyuan Feng","doi":"10.1049/itr2.70075","DOIUrl":null,"url":null,"abstract":"<p>The study investigates emergency evacuation strategies for high-capacity multi-line transfer metro stations, with a focused examination on congestion dynamics induced by interweaving passenger flows. Taking a three-line interchange station in Xi'an, China, as an example, a 3D emergency evacuation physical model was established using AnyLogic software, with pedestrian parameters and behavioural logic for security checks, level transfers, and evacuation configured through Java programming. Observations from a scenario involving 2200 passengers revealed that safety exits B, C and E, along with escalator groups 1 and 4 in high-traffic areas, were the station's evacuation bottlenecks, leading to congestion and stampede risks. Pedestrians tended to choose the nearest exits, resulting in a peak density of up to 3.79 persons/m<sup>2</sup>. To address these challenges, this study proposed two optimised evacuation routes. After optimisation, evacuation time was significantly reduced by over 10%, meeting safety requirements. These findings contribute to improving emergency evacuation strategies for complex multi-line subway stations.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"19 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.70075","citationCount":"0","resultStr":"{\"title\":\"Emergency Evacuation Paths for Three-line Transfer Subway Station by AnyLogic Simulation: A Case Study\",\"authors\":\"Kai Wang,&nbsp;Quanfang Li,&nbsp;Jun Deng,&nbsp;Chang Su,&nbsp;Yuanyuan Feng\",\"doi\":\"10.1049/itr2.70075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The study investigates emergency evacuation strategies for high-capacity multi-line transfer metro stations, with a focused examination on congestion dynamics induced by interweaving passenger flows. Taking a three-line interchange station in Xi'an, China, as an example, a 3D emergency evacuation physical model was established using AnyLogic software, with pedestrian parameters and behavioural logic for security checks, level transfers, and evacuation configured through Java programming. Observations from a scenario involving 2200 passengers revealed that safety exits B, C and E, along with escalator groups 1 and 4 in high-traffic areas, were the station's evacuation bottlenecks, leading to congestion and stampede risks. Pedestrians tended to choose the nearest exits, resulting in a peak density of up to 3.79 persons/m<sup>2</sup>. To address these challenges, this study proposed two optimised evacuation routes. After optimisation, evacuation time was significantly reduced by over 10%, meeting safety requirements. These findings contribute to improving emergency evacuation strategies for complex multi-line subway stations.</p>\",\"PeriodicalId\":50381,\"journal\":{\"name\":\"IET Intelligent Transport Systems\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.70075\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Intelligent Transport Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/itr2.70075\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/itr2.70075","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

研究了大容量地铁多线路换乘车站的紧急疏散策略,重点研究了客流交织引起的拥堵动态。以中国西安某三线换乘站为例,利用AnyLogic软件建立三维应急疏散物理模型,通过Java编程配置行人参数和安全检查、换乘、疏散的行为逻辑。对涉及2200名乘客的场景的观察显示,安全出口B、C和E,以及高流量区域的自动扶梯1和4组,是车站的疏散瓶颈,导致拥堵和踩踏风险。行人倾向于选择最近的出口,峰值密度达到3.79人/m2。为了应对这些挑战,本研究提出了两条优化的疏散路线。优化后,疏散时间明显缩短10%以上,满足安全要求。这些发现有助于改进复杂多线地铁车站的紧急疏散策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Emergency Evacuation Paths for Three-line Transfer Subway Station by AnyLogic Simulation: A Case Study

Emergency Evacuation Paths for Three-line Transfer Subway Station by AnyLogic Simulation: A Case Study

Emergency Evacuation Paths for Three-line Transfer Subway Station by AnyLogic Simulation: A Case Study

Emergency Evacuation Paths for Three-line Transfer Subway Station by AnyLogic Simulation: A Case Study

The study investigates emergency evacuation strategies for high-capacity multi-line transfer metro stations, with a focused examination on congestion dynamics induced by interweaving passenger flows. Taking a three-line interchange station in Xi'an, China, as an example, a 3D emergency evacuation physical model was established using AnyLogic software, with pedestrian parameters and behavioural logic for security checks, level transfers, and evacuation configured through Java programming. Observations from a scenario involving 2200 passengers revealed that safety exits B, C and E, along with escalator groups 1 and 4 in high-traffic areas, were the station's evacuation bottlenecks, leading to congestion and stampede risks. Pedestrians tended to choose the nearest exits, resulting in a peak density of up to 3.79 persons/m2. To address these challenges, this study proposed two optimised evacuation routes. After optimisation, evacuation time was significantly reduced by over 10%, meeting safety requirements. These findings contribute to improving emergency evacuation strategies for complex multi-line subway stations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Intelligent Transport Systems
IET Intelligent Transport Systems 工程技术-运输科技
CiteScore
6.50
自引率
7.40%
发文量
159
审稿时长
3 months
期刊介绍: IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following: Sustainable traffic solutions Deployments with enabling technologies Pervasive monitoring Applications; demonstrations and evaluation Economic and behavioural analyses of ITS services and scenario Data Integration and analytics Information collection and processing; image processing applications in ITS ITS aspects of electric vehicles Autonomous vehicles; connected vehicle systems; In-vehicle ITS, safety and vulnerable road user aspects Mobility as a service systems Traffic management and control Public transport systems technologies Fleet and public transport logistics Emergency and incident management Demand management and electronic payment systems Traffic related air pollution management Policy and institutional issues Interoperability, standards and architectures Funding scenarios Enforcement Human machine interaction Education, training and outreach Current Special Issue Call for papers: Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信